Inventario de Emisiones de Gases Efecto Invernadero 2006-2008-2010

Montevideo

Evaluación de la Calidad y Control Ambiental Departamento de Desarrollo Ambiental Intendencia de Montevideo

CRÉDITOS

Intendenta de Montevideo: Ana Olivera

Director General del Departamento de Desarrollo Ambiental:

Juan Canessa (2010-a la fecha).

Néstor Campal (2007-2010).

Grupo de Trabajo en Cambio Climático, creado por Resolución 4125/10 y actualizado por Resoluciones 2406/13 y 2733/13, integrado por :

SECRETARIA GENERAL Centro Coordinador de Emergencias Departamentales

DEPARTAMENTO DE DESARROLLO AMBIENTAL División Limpieza, División Saneamiento,

Servicio de Evaluación de la Calidad y Control Ambiental, Equipo Técnico de Educación Ambiental

DEPARTAMENTO DE PLANIFICACION División Planificación Estratégica, División Planificación Territorial

DEPARTAMENTO DE DESARROLLO ECONOMICO E INTEGRACION REGIONAL Unidad Montevideo Rural

DEPARTAMENTO DE MOVILIDAD Unidad Ejecutiva del Plan de Movilidad DEPARTAMENTO DE DESARROLLO SOCIAL División Salud

Coordinación: Gabriella Feola,

Integrantes: Alberto Gómez, Adriana Bentancur, Andrea De Nigris, Beatriz Mato, Carlos Mikolic, Edgardo Pérez, Gabriel Pereyra, Jorge Cuello, José Luis Uriano, Juan Vespa, María del Carmen Gentini, María Mena, Mariella Bazzano, Luis Galione, Pablo Sierra

Equipo de trabajo en este documento

Redacción y revisión:

Bach. Karen Espósito, Ing. Quim. Andrea De Nigris, Quim. Gabriella Feola MSc, (Intendencia de Montevideo).

Publicado en Montevideo Noviembre 2013

Elaboración Inventario GEI de Montevideo 2006: Convenio ICLEI-PNUD-IdeM Contraparte de IdeM: *Verónica Alonso, Andrea De Nigris*

Elaboración Inventario GEI de Montevideo 2008-2010: *Karen Esposito, Andrea De Nigris*

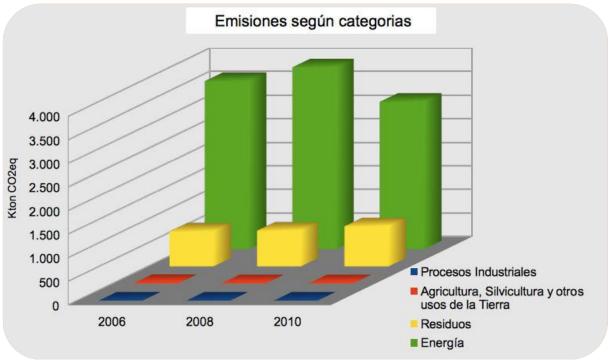
Publicado en Montevideo en noviembre de 2013

PRESENTACIÓN

El primer inventario local de Gases de Efecto Invernadero para el Departamento de Montevideo se publicó conjuntamente con el Inventario de Gases de efecto Invernadero (GEI) de la Región Metropolitana de Uruguay en el año 2011.

Ese documento fue un insumo fundamental para la elaboración y publicación del Plan Climático de la Región Metropolitana de Uruguay, desarrollado en el marco del proyecto "Cambio Climático Territorial. Desarrollo Local Resiliente al Cambio Climático y de bajas emisiones de carbono en los departamentos de Canelones, Montevideo y San José" Proyecto URU/09/003¹

Este trabajo se realiza como respuesta a una de las actividades priorizadas en el Plan Climático; la actualización de los inventarios de efecto invernadero en períodos de dos años.

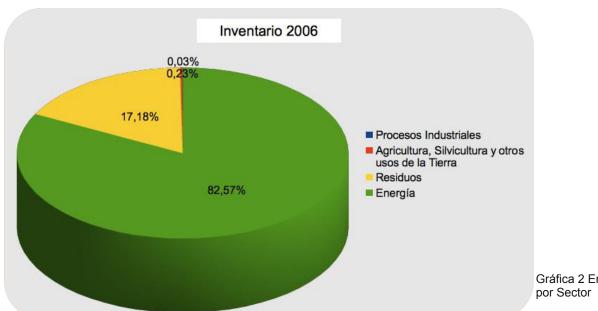

Hasta el momento, Uruguay tiene publicados seis inventarios GEI a nivel nacional (años 90/94/98/00/02/04), y preparado para su pronta publicación el inventario del año 2006. Los inventarios nacionales son realizados bajo la supervisión de la Unidad de Cambio Climático de la Dirección Nacional de Medio Ambiente, del Ministerio de Vivienda, Ordenamiento Territorial y Medio Ambiente.

Sin embargo, los mismos no reflejan las emisiones a una escala más pequeña como puede ser un Departamento. Particularmente para el Departamento de Montevideo las emisiones son de características completamente diferentes a las emisiones del país en su conjunto. El propósito fundamental de los inventarios a nivel subnacional es proveer de información que permita identificar y desarrollar acciones locales con el objetivo de reducción de emisiones de gases de efecto invernadero.

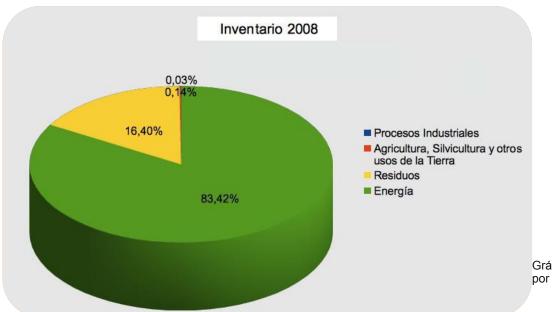
Las emisiones en Uruguay representan un 0,06% de las emisiones mundiales totales, por lo que como país no tiene un compromiso obligatorio de reducción. Por otra parte, si se consideran las emisiones per cápita la situación es diferente, pasando a ser significativas, considerándose importante asumir un compromiso ético y siendo la reducción de emisiones en forma voluntaria una oportunidad para el desarrollo sustentable de Montevideo.

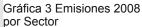
¹⁻ Participaron en este proyecto: Intendencia de Montevideo, Intendencia de Canelones, Intendencia de San José y el programa de Naciones Unidas para el Desarrollo (PNUD).

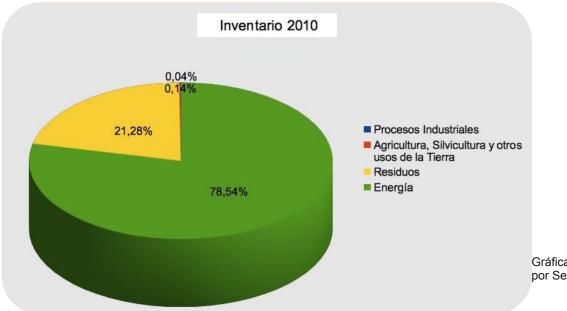
En el presente documento se presentan las estimaciones de las emisiones de Gases Efecto Invernadero (GEI) en el Departamento de Montevideo para los años 2008 y 2010, y la revisión y recálculo del año 2006 para permitir la comparación de la serie histórica. La elaboración de este documento fue realizada en base a las Directrices del Panel Intergubernamental de Cambio Climático (IPCC) del año 2006.



Gráfica 1 Resumen de Inventarios


Contenido General:


El resultado de las emisiones de GEI estimadas para los inventarios de los años 2006, 2008 y 2010 se resume en la gráfica siguiente por año y por sector.


En las siguientes gráficas (2,3,4), se muestra la distribución porcentual en cuatro sectores: Energía, Residuos, Procesos Industriales, y Agricultura, Silvicultura y Otros Usos de la Tierra, para los años 2006, 2008 y 2010.

Gráfica 2 Emisiones 2006 por Sector

INTRODUCCIÓN

Los Gases responsables del Efecto Invernadero interaccionan con la radiación infrarroja emitida por la superficie de la Tierra, la atmósfera, y las nubes, atenuando las variaciones de temperatura que existirían si no estuvieran presente.

El vapor de agua (H2O), dióxido de carbono (CO2), óxido nitroso (N2O), metano (CH4), y ozono (O3) son los principales gases de efecto invernadero en la atmósfera terrestre.

El aumento de la concentración de estos gases en la atmósfera provoca alteraciones en el equilibrio del clima mundial, lo que se conoce como "calentamiento global". Las alteraciones van mas allá de un mero aumento de temperatura media, e incluyen mayor variabilidad climática (con aumento del número de eventos de picos de temperaturas altas y episodios de fríos extremos) con mayor frecuencia que la que los modelos climáticos eran capaces de prever.

Con la finalidad de evaluar la contribución relativa de cada gas al calentamiento global, se utiliza un índice llamado Potencial de Calentamiento Atmosférico (PCA) o "Global Warming Potential" (GWP) que resulta de relacionar el efecto particular de dicha masa liberada, con el de una masa equivalente de CO2 (tomado como referencia) emitido a la atmósfera.

El metano, CH4, contribuye en mayor medida que el CO2, con un PCA de 21, esto quiere decir que cada tonelada de CH4 emitida se considera con un potencial de calentamiento a 100 años equivalente a 21 toneladas de CO2.

El óxido nitroso, N2O, contribuye también en mayor medida que el CO2, ya que su PCA es de 310; esto quiere decir que cada tonelada emitida se considera que tiene un potencial de calentamiento a 100 años, equivalente a 310 toneladas de CO2.

Para sumar el efecto de todos los gases se ha establecido que la masa emitida por estos dos gases, CH4 y N2O, sea expresada en términos de CO2 equivalente (CO2eq). Por lo tanto, la masa de N2O efectivamente emitida se multiplica por un factor de 310 y la de CH4 por un factor de 21, lo que posibilita su suma a las estimaciones de emisión de CO2 directas, expresándose el conjunto de los gases como toneladas de CO2eq.

Este documento al igual que el inventario para el 2006, ha estimado únicamente las emisiones de CO2, CH4 y N2O, ya que son los mayoritarios en Uruguay y en la región en estudio.

Se realizó una estimación preliminar de SF6, HFC y PFC y se observó que a pesar de su gran potencial de calentamiento, las cantidades son tan pequeñas que en el total de las emisiones son insignificantes.

Sectores

La metodología empleada para la realización de este informe se basa en las directrices del IPCC del año 1996, por recomendación de la Unidad de Cambio Climático (UCC - DINAMA). Estas guías fueron contrastadas con las nuevas guías IPCC-2006. Se revisaron todos los factores de emisión utilizados, actualizando los que correspondieron, y se analizaron las modificaciones entre ambas guías.

Las guías IPCC agrupan las emisiones y remociones en categorías dentro de 4 sectores principales:

Energía

Procesos Industriales

Agricultura, Silvicultura y otros Usos de la tierra

Residuos

ALCANCES

Los alcances son entidades lógicas de tipificación de emisiones que permiten su caracterización y evita la doble contabilidad. Esta metodología se adopta del ICLEI (Gobiernos Locales por la Sustentabilidad).

Los alcances se definen en forma relativa a la unidad organizacional que se haya tomado como perspectiva.

Alcance 1

Corresponden a las emisiones directas producidas en instalaciones, por equipos o procesos del Departamento de Montevideo. Se consideran emisiones de alcance 1 los consumos de combustibles utilizados en Montevideo.

Alcance 2

Las emisiones indirectas asociadas al consumo de cierto producto o servicio cuyas fuentes de emisiones están fuera de la unidad organizacional pertenecen al alcance 2.

Por asociadas se entiende:

Cualitativamente: emisiones que fueron producidas en instalaciones o equipos o procesos de un proveedor directo de dicho producto o servicio.

Cuantitativamente: la proporción de emisiones correspondiente al consumo.

Un ejemplo de emisiones de alcance 2 son las producidas por las centrales termoeléctricas que suministran la electricidad para el Departamento de Montevideo y para otros destinos, siendo que las emisiones se realizan en este territorio pero para cumplir un servicio en otro.

RESUMEN DE RESULTADOS-2006

Emisiones	CO2 kton	N2O kton	CH4 kton
TOTAL	3492,37	0,19	32,19
1 ENERGÍA	3491,3	0,1094	1,9
Industrias de la Energía	2060,67	1,61E-02	0,0804
12 Industrias	284,87	2,18E-03	0,0131
3 Transporte	941,33	6,87E-02	0,1434
A4 Residencial	152,96	2,08E-02	1,5490
A4b Comercial y Servicios	51,43	1,65E-03	0,1056
PROCESOS INDUSTRIALES	1,1		
5 Carbonato Sódico	0,72		
7 Carburo de Calcio	0,39		
BAGRICULTURA, SILVICULTURA Y OTROS US LA TIERRA	SOS DE	0,01	0,22
1 Fermentación Entérica			0,22
Manejo del estiercol		1,49E-02	
RESIDUOS		0,07	30,09
1 Disposición de Residuos Sólidos			29,38
1 Tratamiento de Aguas Residuales Industriales	3		0,71
72 Tratamiento de Aguas Residuales domésticas		6,70E-02	
PARTIDAS INFORMATIVAS	652,9		
Quema de biomasa	652,93		

Tabla 1: Resumen Inventario GEI 2006 (recálculo)

RESUMEN DE RESULTADOS-2008

Emisiones	CO2 kton	N2O kton	CH4 kton
TOTAL	3781,80	0,19	37,23
1 ENERGÍA	3780,4	0,117	1,9
Industrias de la Energía Industrias Transporte	1992,64 540,26 1000,35	1,57E-02 4,24E-03 7,50E-02	7,83E-02 2,27E-02 1,62E-01
Residencial A4b Comercial y Servicios	157,05 90,06	1,98E-02 2,17E-03	1,48E+00 1,28E-01
2 PROCESOS INDUSTRIALES	1,4		
B5 Carbonato Sódico B7 Carburo de Calcio	1,14 0,30		
3 AGRICULTURA, SILVICULTURA Y OTROS US LA TIERRA	OS DE	0,01	0,20
Fermentación Entérica Manejo del estiercol		8,28E-03	0,20
4 RESIDUOS		0,07	35,17
Disposición de Residuos Sólidos Tratamiento de Aguas Residuales Industriales Tratamiento de Aguas Residuales domésticas		6,67E-02	31,35 3,82
PARTIDAS INFORMATIVAS	620,9		
Quema de biomasa	620,88		

Tabla 2: Resumen Inventario GEI 2008

RESUMEN DE RESULTADOS-2010

Emis	iones	CO2 kton	N2O kton	CH4 kton
т	DTAL	3059,29	0,19	41,47
1 EN	ERGÍA	3057,5	0,1	1,8
A1 Inc	dustrias de la Energía	1202,00	9,35E-03	0,05
A2 Inc	dustrias	500,12	4,12E-03	0,02
A3 Tra	ansporte	1094,51	8,56E-02	0,19
A4º RE	esidencial	168,05	1,95E-02	1,44
A4b Co	omercial y Servicios	92,82	2,16E-03	0,13
2 PRC	OCESOS INDUSTRIALES	1,8		
B5 Ca	arbonato Sódico	1,58		
в7 Са	arburo de Calcio	0,21		
	RICULTURA, SILVICULTURA Y OTROS ERRA	USOS DE	0,01	0,20
A1 Fe	ermentación Entérica			0,20
A2 Ma	anejo del estiercol		5,14E-03	
4 RES	SIDUOS		0,07	39,44
A1 Di	sposición de Residuos Sólidos			37,37
D1 Tra	atamiento de Aguas Residuales Industrial	es		2,07
D2 Tra	atamiento de Aguas Residuales doméstic	as	6,66E-02	
PART	IDAS INFORMATIVAS	606,2		
Quem	a de biomasa	606,15		

Tabla 3: Resumen Inventario GEI 2010

Todas los cálculos fueron de nivel 1, es decir, que se utilizaron los valores por defecto, excepto cuando pudo obtenerse factores de emisión para el país (generación de energía eléctrica) y datos de actividad más ajustados (residuos y quema de combustibles en Industrias de la Energía y Transporte).

Datos de actividad: fueron solicitados a los organismos correspondientes (UTE, ANCAP, DUCSA, IdeM) o fueron tomados de publicaciones existentes (Balance Energético Nacional o información del Instituto Nacional de Estadística, o MGAP).

Factores de emisión: coeficientes que cuantifican las emisiones o absorciones por actividad unitaria. Los mismos fueron actualizados respecto del inventario realizado con anterioridad utilizando en este caso los factores publicados por las directrices del IPCC para el año 2006.

Las emisiones se estiman como:

Emisiones = Dato de actividad * Factor de Emisión

MARCO TEÓRICO

CONTRIBUCIÓN RELATIVA AL CALENTAMIENTO GLOBAL

Los gases de efecto invernadero tienen diferente capacidad de influir en el balance energético del sistema Tierra-Atmósfera. El Potencial de Calentamiento Atmosférico (PCA) es un parámetro que permite estimar el impacto potencial futuro de las emisiones de los diferentes gases y evaluar la contribución relativa a CO2 del gas en cuestión para un lapso determinado. El IPCC ha determinado el PCA de una gran cantidad de gases de efecto invernadero para distintos horizontes temporales, típicamente 20, 100 y 500 años.

El cálculo del índice y las respuestas relativas a los otros gases está en continua revisión. Los PCA utilizados en este inventario corresponden a la publicación del IPCC: *Third Assessment Report - Climate Change 2001*.

Multiplicando la concentración de gas emitido por el PCA se obtiene el CO2eq, que corresponde a la concentración de CO2 que causaría el mismo efecto que el gas evaluado, en el horizonte temporal de referencia. En este caso se utiliza 100 años.

A partir de las emisiones evaluadas en el presente Inventario y utilizando la información antes mencionada, se pueden calcular y comparar los impactos potenciales de las emisiones del año 2006, 2008 y 2010 de los gases de efecto invernadero, para el horizonte de tiempo de 100 años

Las concentraciones de los gases expresadas como CO2 eq (equivalente) son calculados de la siguiente forma:

CO2 eq (Kton/año) = Emisiones Netas Gas (Kton /año) * PCA en 100 años

TABLA RESUMEN EMISIONES 2006						
GAS	EMISIONES NETAS	PCA EN 100 años	EMISIONES NETAS a 100 años			
	en kton gas		en kton CO2 eq			
CO2	3492,37	1,0	3492,4			
CH4	32,19	21	676,0			
N20	0,19	310	59,3			

Tabla 4: Resumen Emisiones GEI 2006

TABLA RESUMEN EMISIONES 2008						
GAS	EMISIONES NETAS en kton gas	PCA EN 100 años	EMISIONES NETAS a 100 años en kton CO2 eq			
	en klon gas		en klon CO2 eq			
CO2	3781,80	1,0	3781,8			
CH4	37,23	21	781,9			
N20	0,19	310	59,5			

Tabla 5: Resumen Emisiones GEI 2008

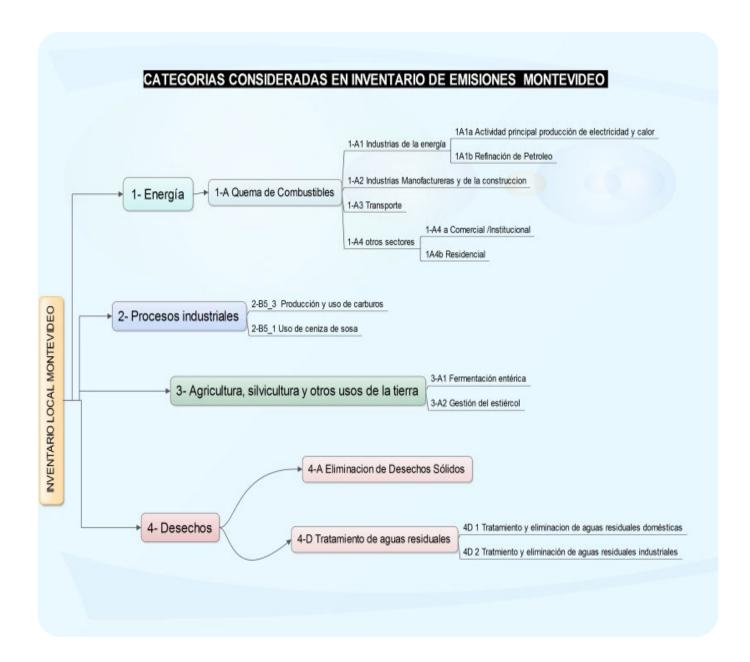

TABLA RESUMEN EMISIONES 2010						
GAS	EMISIONES NETAS	PCA EN 100 años	EMISIONES NETAS a 100 años			
	en kton gas		en kton CO2 eq			
CO2	3059,29	1,0	3059,3			
CH4	41,47	21	870,8			
N20	0,19	310	59,6			

Tabla 6: Resumen Emisiones GEI 2010

ESTRUCTURA Y CONTENIDO DEL INVENTARIO DE GEI PARA MONTEVIDEO

El Inventario de Gases de Efecto Invernadero de Montevideo en esta edición incluye la estimación de las emisiones netas directas de los siguientes gases

Dióxido de Carbono (CO2) Metano (CH4) Oxido Nitroso (N2O)

SECTORES CONSIDERADOS

A partir de los resultados del Inventario de gases de efecto invernadero para el Área Metropolitana del año 2006 se establece que las categorías principales para el departamento de Montevideo son Energía y Residuos. Dentro de estas categorías las principales son las que se indican en la imagen anterior.

Para las categorías consideradas como no principales, se realiza el cálculo de las emisiones que es posible estimar con un grado aceptable de certeza y se establecen los casos en que es conveniente continuar profundizando para ajustar los cálculos.

ENERGIA

En este Sector se considera exclusivamente el Subsector 1A- Quema de Combustibles, ya que no fue posible estimar el subsector 1B; por otra parte, de los datos provenientes de los inventrairos nacionales surge que no es una categoría principal.

El sector 1A1 corresponde a Industrias de la Energía, las cuales deben ser consideradas de manera particular pues tienen gran peso en las emisiones totales del Departamento. Las actividades que comprenden estas industrias son: la conversión en combustibles fósiles secundarios o terciarios (conversión del petróleo crudo en productos del mismo en la Refinería de La Teja), y la conversión en vectores energéticos no fósiles (conversión de combustibles fósiles en electricidad, Centrales Termoeléctricas).

Las emisiones que provienen de la combustión de los combustibles secundarios, producidos por dichas industrias, se consideran en los sectores en los que los mismos son utilizados. En la recopilación de datos de la actividad que cada industria realiza es necesario distinguir entre combustible quemado y el combustible que se convierte en secundario o terciario.

Con el fin de asignar a cada uno de los subsectores las emisiones asociadas al uso de energía eléctrica, se realiza una distribución de las emisiones estimadas de las centrales térmicas, a partir de los consumos eléctricos según el consumo de energia. En este caso, se toma las emisiones según elfactor de emisión (FE) declarado por UTE (empresa proveedora de energía eléctrica) y se distribuyéndose por subsector para asignar las emisiones según el consumo.

Para la evaluación de los otros subsectores que corresponden a 1A2 Industria Manufacturera, 1A3 Transporte, 1A4a Comercial y servicios y 1A4b Residencial; se considera la información proveniente del Balance Energético Nacional (BEN) ponderada por población o por estimación de actividad según corresponda. Estos datos fueron contrastados informacion brindada por la empresa distribuidora de combustible (DUCSA).

Se considera en todos los casos, las emisiones de CO2, CH4 y N2O para todos los subsectores.

El uso de leña como combustible no se contabiliza en las emisiones de CO2 como se indica en las direcctrices IPCC, sin embargo las emisiones de CH4 y N2O de la quema de biomasa se consideran en las emisiones de la categoría asignadas a los sectores correspondientes. De todas formas, cabe destacar que el dato de consumo de biomasa en el Departamento de Montevideo tiene asociado a una gran incertidumbre. Los datos de quema de leña correspondientes al año 2006 surgen de una encuesta especial realizada en ese año y que no se continuó en años sucesivos. Para este inventario se considera la información del BEN ponderado por población de Montevideo como la fracción de emisión correspondiente al Departamento. Por lo antedicho, se recalculan las emisiones del año 2006 a efectos de su comparación con una misma base de información.

PROCESOS INDUSTRIALES

En Uruguay según los Inventarios Nacionales, los procesos industriales responsables de la emisión de CO2 son fundamentalmente los que corresponden a la producción de Cemento Portland (el 91,8% Inventario Nacional 2004). Ninguna de esas plantas se encuentra en el territorio de Montevideo. Las emisiones de CO2 de procesos industriales que pueden considerarse corresponde al uso de carbonato sódico y carburo de calcio.

Los datos de actividad fueron estimados a partir del carbonato sódico importado para todo el país y del carburo de calcio consumido en la producción de gas acetileno en Uruguay. Teniendo en cuenta el rendimiento informado por las industrias que lo utilizan y suponiendo que el 75% de lo importado queda en Montevideo y es utilizado en la industria, unicamente se informa CO2 para este sector.

AGRICULTURA, SILVICULTURA Y OTROS USOS DE LA TIERRA

Determinados procesos relacionados al uso de la tierra, son causantes de remoción y liberación de carbono y nitrógeno a causa de diversos procesos físicos (combustión, lixiviación y escurrimiento) y procesos biológicos.

La estimación de emisiones en esta categoría se determina a partir de emisiones y absorciones en tierras forestales, tierras de cultivo, pastizales, humedales, asentamientos y otras tierras, emisiones por gestión de ganado vivo y de estiércol, de los suelos gestionados y de las aplicaciones de piedra caliza y de urea.

Esta categoría abarca también los métodos para estimar las variables de los productos de madera recolectada (PMR). Se divide en tres subcategorias:

3A Ganado - incluye emisiones de metano por la fermentación entérica y emisiones de metano y óxido nitroso por la gestión de estiércol.

3B Tierra - Emisiones y absorciones de cinco categorías del uso de la tierra (tierras forestales, tierras de cultivo, pastizales, asentamientos y otras tierras). El inventario de gases de efecto invernadero implica la estimación de los cambios en las existencias de carbono de cinco depósitos de carbono (biomasa sobre la superficie, biomasa debajo de la superficie, madera muerta, hojarasca y materia orgánica del suelo) en la medida en que fuera adecuado.

3C - Fuentes agregadas y fuentes de emisión no CO2 en la tierra.

A partir de los resultados del Inventario Local 2006, se determinó que a diferencia de lo que sucede en el Inventario Nacional, ésta no es una categoría principal para el Departamento de Montevideo. La alta incertidumbre de la información para los items 3B y 3C llevaron a que los intentos de contabilizar estas emisiones dieran lugar a valores inconsistentes. Este aspecto deberá ser profundizado en próximos inventarios, ya que constituye una oportunidad de mitigación que no está siendo considerada actualmente en el Departamento. A los efectos de este inventario se considera solamente la emisión de CH4 y N2O debida al Ganado, Subcategoría 3A.

RESIDUOS

En este sector son consideradas dos categorias: 4A Eliminación de desechos sólidos y 4D tratamiento y eliminación de aguas residuales. El metano se genera en un proceso anaerobio de descomposición de la materia orgánica contenida en residuos sólidos urbanos, aguas residuales industriales, aguas residuales domésticas y comerciales.

Las aguas residuales industriales son posibles fuente de metano y óxido nitroso cuando se las trata o elimina en medio anaeróbico y contienen cargas significativas de carbono. Este proceso de fermentación anaerobia implica la transformación de materia orgánica en compuestos más simples mediante acción microbiana en ausencia de oxígeno. Los productos finales de dicha transformación son metano y dióxido de carbono. La ausencia de oxígeno puede ocurrir naturalmente.

INFORMACIÓN Y ARREGLOS INSTITUCIONALES

Los datos de actividad y otros elementos esenciales de información que se han utilizado, fueron obtenidos en su totalidad de fuentes nacionales y publicaciones existentes.

En casi todos los casos se utilizaron los factores de emisión (magnitud de contaminante por magnitud de actividad) que "por defecto" proporcionan las Directrices del IPCC (versión del 2006).

En el caso de generación de energía, para alcance dos, se asignó a las emisiones totales de UTE en el territorio, la distribución por subsector tal como está establecido en el Balance Energético Nacional (BEN).

Sector	Información	Fuente
	Consumos eléctricos de la propia IdeM y alumbrado público	IdeM
	Consumos de combustibles IdeM	DUCSA
	Consumo Combustibles Transporte	DUCSA
	Consumo de combustible para la red ferroviaria del país. (combustible que se compra a las distribuidoras)	MTOP
	Consumos de combustibles residencial	DUCSA-BE
	Consumos de combustibles comercial e institucional	DUCSA-BE
ENERGÍA	Consumos de combustibles industrial	DUCSA-BE
	Industrias de la Energía	UTE ANCA
	Consumos de combustibles en la Refinería de la Teja	ANCAP
	Consumos de Energía Eléctrica por departamento y tipo de Consumidor	INE-UTE
	Energía despachada por departamento.	MIEM-BEN
PROCESOS	Importaciones de CaC y Na2CO3.	DNA
AGRICULTURA	Existencias Vacunos y Ovinos por departamento.	DIEA-MGA
RESIDUOS	Toneladas de residuos ingresados en Sitio de Disposición Final Tresor	IdeM- SDF
I LOIDOO	Efluentes Industriales (tratamiento anaeróbico)	IdeM-UEI
OTROS	Población	INE
OTINOS	Encuesta Nacional de gastos e ingresos de los hogares	INE

DIÓXIDO DE CARBONO

En Montevideo, las emisiones de CO2 provienen mayoritariamente de las actividades del sector Energía. En el año 2006 este sector aportó 3639 kton de un total de emisiones brutas de 3640 Kton; en el año 2008 el aporte alcanzó 4940 Kton de un total de emisiones brutas de 4941,6 Kton totales de CO2 y en el año 2010 las emisiones directas de este gas llegaron a 4263 kton de un total de 4265 Kton de emisiones brutas de CO2. En todos los casos la emisión del CO2 por quema de combustible supera ampliamente el 99% de las emisiones directas.

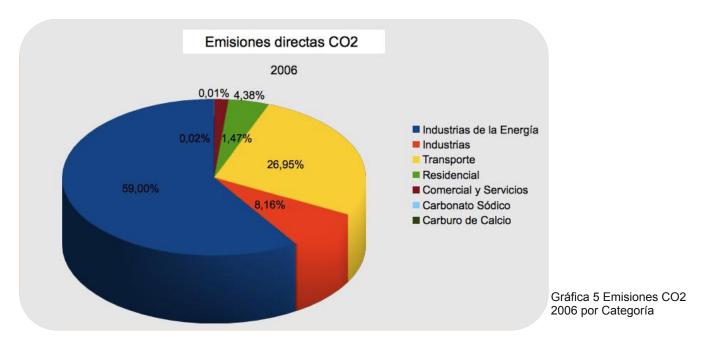
Si se analiza la distribución porcentual para las distintos sub-sectores dentro del sector energía, es posible ver que el porcentaje de emisiones de CO2 de las Industrias de la Energía ha disminuido desde el año 2006. Esto se debe a que en el año 2006 la participación de la energía hidroeléctrica fue menor que la habitual. En ese año se registró una importante sequía que afectó a la región, por lo que las centrales térmicas de generación de energía funcionaron en forma intensa en ese período.

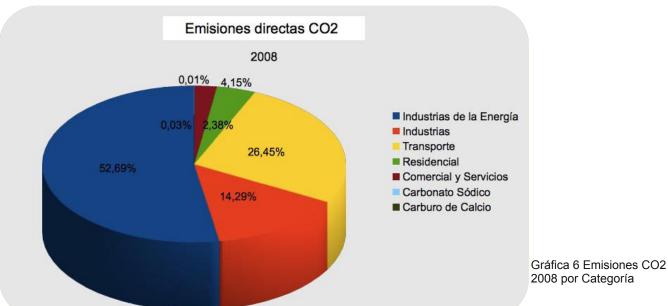
Los porcentajes de participación de cada subsector en la emisión de CO2 directa se muestran en la Tabla 7.

	2006	2008	2010
1 ENERGÍA			
A1 Industrias de la Energía	59,00%	52,69%	39,29%
A2 Industrias	8,16%	14,29%	16,35%
A3 Transporte	26,95%	26,45%	35,78%
A4 a Residencial	4,38%	4,15%	3,03%
A4b Comercial y Servicios	1,47%	2,38%	5,49%
2 PROCESOS INDUSTRIALES			
B5 Carbonato Sódico	0,02%	0,03%	0,05%
B7 Carburo de Calcio	0,01%	0,01%	0,01%
3 AGRICULTURA, SILVICULTURA	Y OTROS USOS I	DE LA TIERRA	
= 1 = 1/			

- A1 Fermentación Entérica
- A2 Manejo del estiercol

4 RESIDUOS


Disposición de Residuos


- A1 Sólidos
 - Tratamiento de Aguas
- D1 Residuales Industriales Tratamiento de Aguas
- D2 Residuales domésticas

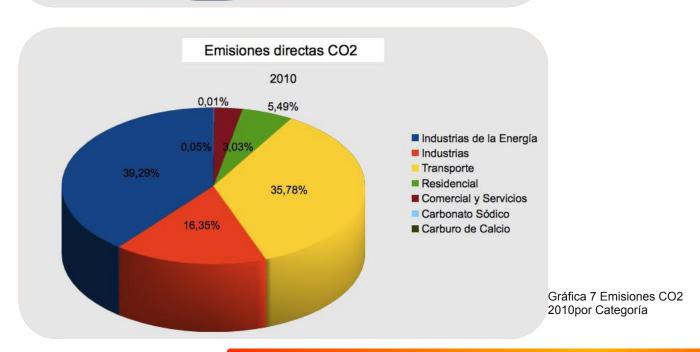
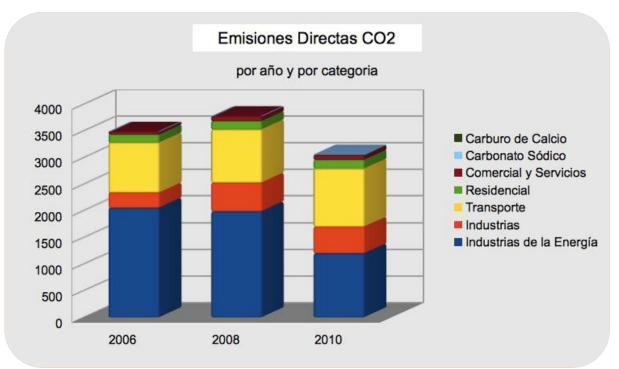

RELACION DE EMISIONSE CO2 /EMISIONES POR QUEMA DE BIOMASA

Tabla 7:Emisiones de CO2
Porcentaje por categoría

CO2 TOTAL/CO2 QUEMA BIOMASA

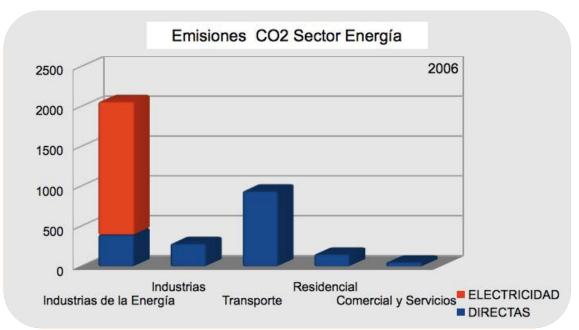


Para la estimación de las emisiones de CO2 debidas al consumo final de combustibles en los diferentes sectores de actividad, se toma como base el cálculo de las emisiones a partir del contenido de carbono en los combustibles consumidos, expresado en términos de energía (terajulios, TJ).

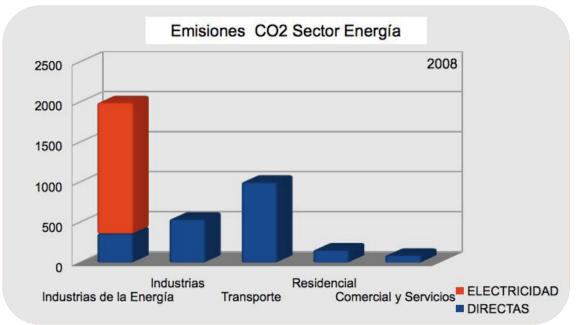
A partir de los datos del consumo de combustibles, se calculan las emisiones de CO2 teniendo en cuenta los factores de emisión por quema de combustibles fósiles provistos por defecto por el IPCC, considerando por defecto un factor de oxidación de carbono de 1.

En el siguiente gráfico se ilustran las emisiones directas de CO2 para los tres inventarios.

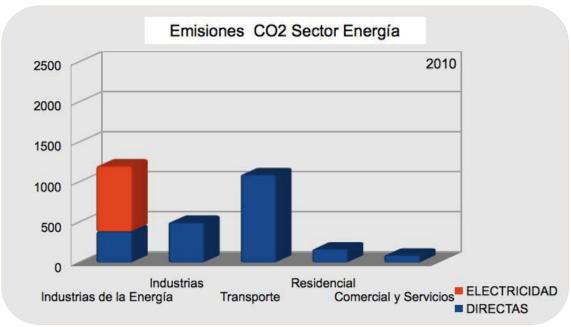
Gráfica 8 Emisiones totales por categoría por año


Panorama sectorial

Energía- Actividades de quema de combustibles fósiles


Las emisiones del sector energía por año y subsector se muestran en la Tabla 8. En los gráficos 9, 10 y 11 se muestran las emisiones asociadas al sector energía por subsector, distinguiendo en industrias de la energía, las correspondientes a las emisiones de funcionamiento de la Refinería (en color azul) de las emisiones correspondientes a la generación de electricidad (en color rojo) para los tres inventarios.

1-ENERGÍA EMISIONES CO2						
	2006	2008	2010			
	Kton CO2	Kton CO2	Kton CO2			
Industrias de la Energía	2060,671	1992,639	1202,001			
Industrias	284,866	540,259	500,123			
Transporte	941,334	1000,351	1094,514			
Residencial	152,960	157,048	168,045			
Comercial y Servicio	51,435	90,062	92,841			


Tabla 8 Emisiones de CO2 Energía

Gráfica 9 Emisiones CO2 Energía 2006

Gráfica 10 Emisiones CO2 Energía 2008

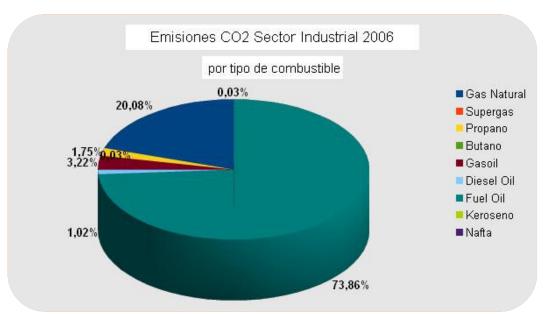
Gráfica 11 Emisiones CO2 Energía 2010

	RESULTADOS ENERGÍA SUMANDO EMISIONES POR CONSUMO ELÉCTRICO				
	Emisiones CO2 por consumo de energía	2006	2008	2010	
	eléctrica	Kton CO2	Kton CO2	Kton CO2	
	Residencial	726,463	740,400	770,583	
Tabla 9 Emisones de CO2 por consumo eléctrico		480,132	523,486	605,475	
consumo cicomico	Industrias	514,741	574,142	566,092	

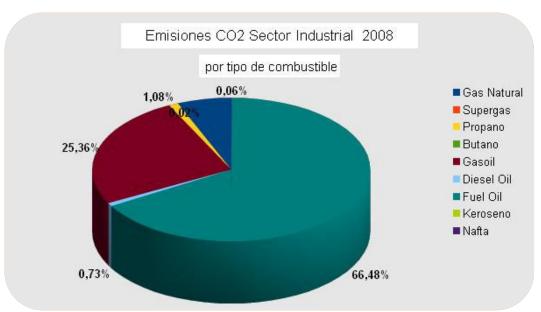
La disminución de emisiones asociadas a la generación de energía que se observa en el año 2010 respecto a los anteriores, es debido a que en el año 2010 el uso de las centrales termoeléctricas para la generación de energía fue mucho menor que en los años anteriories, con un uso mayor de la energia renovable tradicional.

.

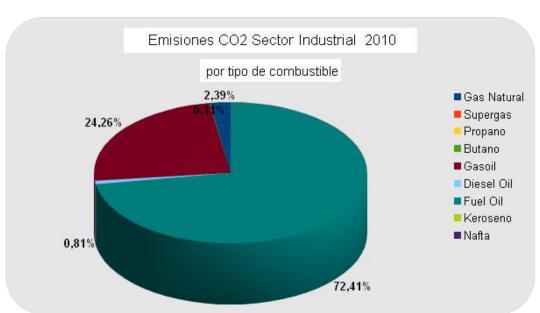
Las emisiones de CO2 por consumo eléctrico distribuidas por subsector se informan en la Tabla 9. Estos valores muestran que al distribuir las emisiones por electricidad entre los consumidores, las emisiones asociadas a los otros sectores (Industria, Residencial y Comercio y Servicios), son significativas, y es factible proponer planes de mitigación locales para estos sectores.


Energía- Subsector Industrial

El CO2 emitido en el subsector industrial fue estimado a partir de los datos de venta de combustible en Montevideo informado en el Balance Energético Nacional y DUCSA


Los resultados de esta estimación por combustible se muestran en la Tabla 10

1- A2 EMISIONES DE CO INDUSTRIAS	02 POR QUEM	A DE COMBUST	IBLES EN
	2006	2008	2010
COMBUSTIBLE	Kton CO2	Kton CO2	Kton CO2
Gas Natural	57,191	33,899	11,975
Supergas	0,000	0,001	0,000
Propano	4,989	5,849	0,000
Butano	0,081	0,133	0,566
Gasoil	9,184	137,008	121,350
Diesel Oil	2,917	3,925	4,074
Fuel Oil	210,412	359,138	362,136
Keroseno	0,005	0,000	0,000
Nafta	0,086	0,306	0,022
Leña r	37,720	26,712	30,730


Tabla 10 Emisones de CO2 por subsector Industria Manofacturera

Gráfica 12 Emisiones CO2 Industria 2006

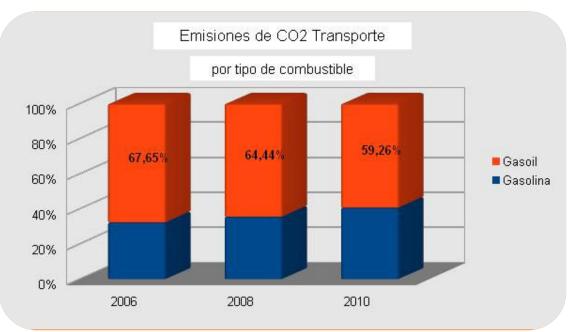
Gráfica 13 Emisiones CO2 Industria 2008

Gráfica 14 Emisiones CO2 Industria 2010

Energía- Subsector Transporte

Para este inventario es considerada la actividad terrestre del transporte, ya sean automóviles, camiones, motocicletas, ómnibus y ferrocarriles.

Los resultados fueron estimados a partir de los litros de combustible vendidos en Montevideo.


A efectos de este cálculo se consideró que todo el combustible expedido en Montevideo fue utilizado en el Departamento. No se diferenciaron las emisiones según tipo de vehículo.

A partir del siguiente gráfico se puede observar que las emisiones de CO2 de mayor importancia dentro del subsector de Transporte son debidas a la quema de Gasoil, al mismo tiempo que se observa una tendencia al aumento de las emisiones relativas de CO2 debido al uso de gasolina.

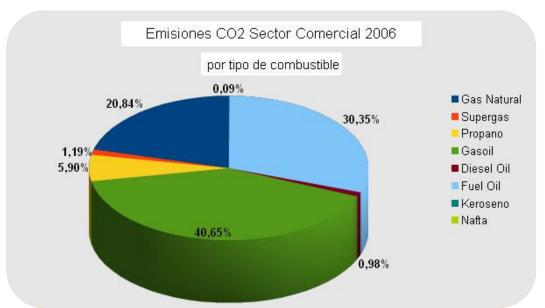
En la Tabla 11 se muestran los datos por año en Kton CO2.

1-A3 EMISIONES DE CO2 POR QUEMA DE COMBUSTIBLES EN TRANSPORTE TERRESTRE					
	2006	2008	2010		
COMBUSTIBLE	Kton CO2	Kton CO2	Kton CO2		
Gasolina	304,56	355,72	445,86		
Gasoil	636,78	644,63	648,65		

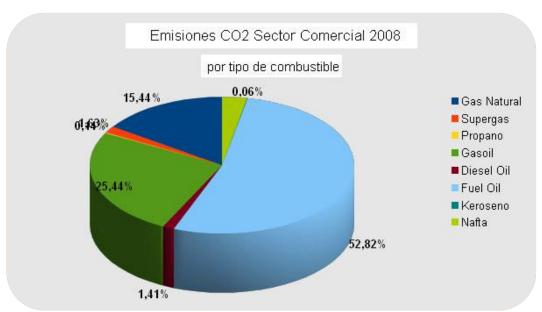
Tabla 11 Emisones de CO2 por subsector Transporte

Gráfica 15 Emisiones de CO2 Transporte

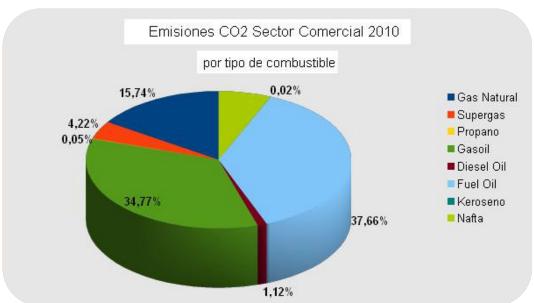
Energía- Subsector Comercial y Servicios


Se realizó la estimación de emisiones según tipo de combustible para el subsector Comercial y Servicios.

El CO2 emitido fue estimado a partir de los datos de venta de combustible en el Departamento, de publicaciones del INE y del Balance Energético Nacional, en el último caso estimado por población.


La mayor cantidad de emisiones en el subsector Comercial y Servicios, proviene del consumo de Energía Eléctrica. Las siguientes emisiones, en orden de importancia, provienen del uso de Gas Oil y Fuel Oil.

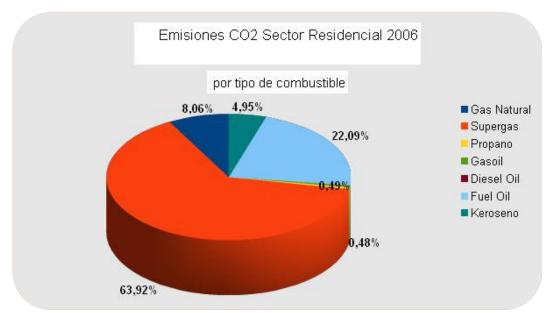
1 A4a EMISIONES DE CO2 POR QUEMA DE COMBUSTIBLES EN COMERCIALES Y SERVICIOS			
	2006	2008	2010
COMBUSTIBLE	Kton CO2	Kton CO2	Kton CO2
Gas Natural	10,717	13,904	14,614
Supergas	0,611	1,466	3,921
Propano	3,035	0,129	0,046
Gasoil	20,909	22,908	32,270
Diesel Oil	0,506	1,267	1,040
Fuel Oil	15,611	47,574	34,957
Keroseno	0,046	0,051	0,015
Nafta	0,000	2,763	5,958
Leña r	37,106	43,544	43,143


Tabla12 Emisones de CO2 por subsector Comercial y Servicios

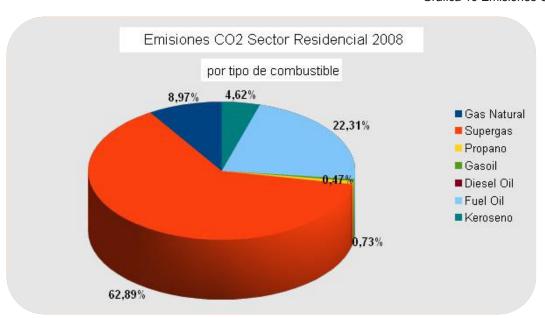
Gráfica 16 Emisiones CO2 Comercio 2006

Gráfica 17 Emisiones CO2 Comercio 2008

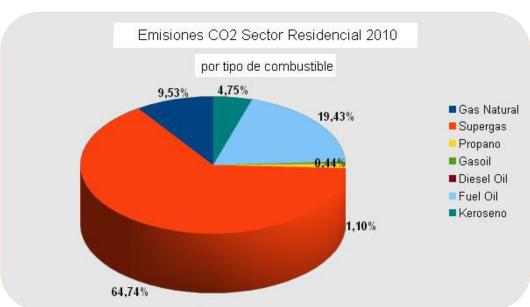
Energía- Subsector Residencial


Se realizó la estimación de emisiones según tipo de combustible para el subsector residencial. El CO2 emitido fue estimado a partir de los datos del Balance Energético Nacional considerados por población. Se presenta el gráfico de emisión de CO2 por tipo de combustible, incluyendo la electricidad.

Se evidencia que la mayor cantidad de emisiones en el subsector residencial proviene del consumo de energía eléctrica.

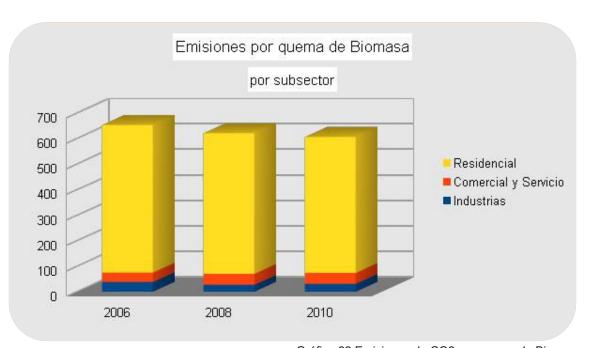

El energético más utilizado es el Supergas, mayoritariamente para cocción de alimentos y calefacción.

1 A4b EMISIONES DE CO2 POR QUEMA DE COMBUSTIBLES RESIDENCIALES				
	2006	2008	2010	
COMBUSTIBLE	Kton CO2	Kton CO2	Kton CO2	
Gas Natural	12,329	14,092	16,010	
Supergas	97,773 98,768		108,799	
Propano	0,733	1,140	1,849	
Gasoil	0,755	0,745	0,745	
Diesel Oil	0,000	0,000	0,000	
Fuel Oil	33,796	35,043	32,654	
Keroseno	7,574	7,261	7,988	
Leña	562,492	534,410	529,478	
Carbon Vegetal	15,615	16,211	2,801	


Tabla 13 Emisones de CO2 por subsector Residencial

Gráfica 19 Emisiones CO2 Residencial 2006

Gráfica 20 Emisiones CO2 Residencial 2008

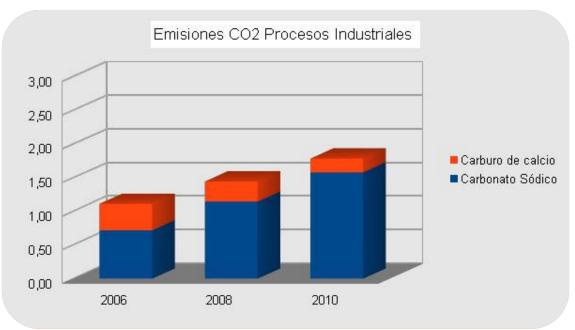

Gráfica 21 Emisiones CO2 Residencial 2010

Actividades de quema de Biomasa (Partidas Informativas)

Las emisiones provenientes de quema de Biomasa por subsector, independientemente del tipo de Biomasa considerado (leña, carbón), se muestran en el gráfico 22

EMISIONES CO2 POR QUEMA DE BIOMASA				
	2006 2008 2010			
	Kton CO2	Kton CO2	Kton CO2	
Industrias	37,720	26,712	30,730	
Comercial y Servicio	37,106	43,544	43,143	
Residencial	578,107	550,621	532,279	

Tabla 14 Emisones de CO2 por quema de Biomasa

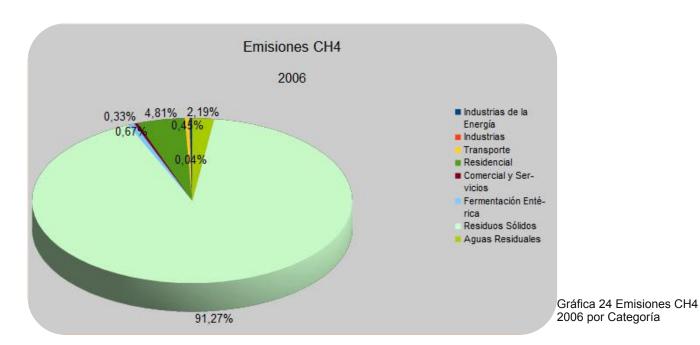

Gráfica 22 Emisiones de CO2 por quema de Biomasa

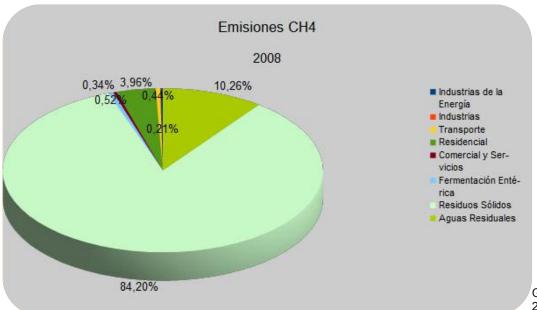
Procesos Industriales

En el siguiente gráfico se observa la incidencia del uso de carbonato sódico y carburo de calcio en las emisiones de CO2 en el sector industrial

2 PROCESOS EMISIONES CO2				
	2006	2008	2010	
	Kton CO2	Kton CO2	Kton CO2	
Carbonato Sódico	0,718	1,142	1,576	
Carburo de calcio	0,392	0,301	0,206	

Tabla 15 Emisones de CO2
Procesos Industrialesa


Gráfica 23 Emisiones de CO2 Procesos Industriales


METANO

En el caso de Montevideo, a diferencia de lo que ocurre en todo el país, las principales fuentes de emisión de este gas corresponden a los Residuos, siendo el aporte en Agricultura y Energía menor al 0,8 % en forma conjunta.

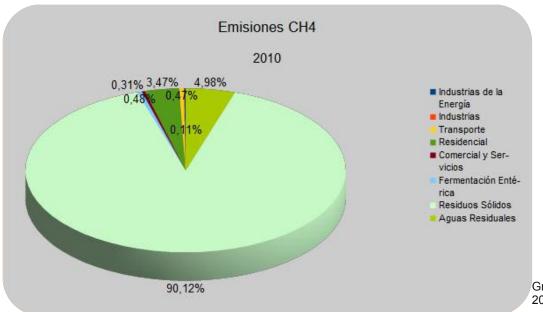
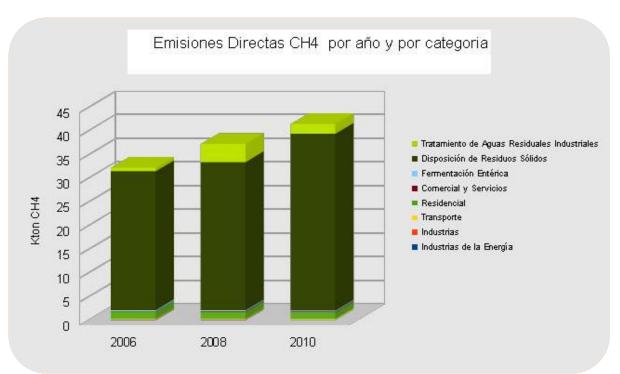

ΕMI	SIONES PORCENTUALES D	F CO2 POR	CATEGORIA	\s	
		2006	2008	2010	
1 El	1 ENERGÍA				
A1	Industrias de la Energía	0,25%	0,21%	0,11%	
A2	Industrias	0,04%	0,06%	0,05%	
A3	Transporte	0,45%	0,44%	0,47%	
A4 a	Residencial	4,81%	3,96%	3,47%	
A4b	Comercial y Servicios	0,33%	0,34%	0,31%	
2 PR	OCESOS INDUSTRIALES				
B5	Carbonato Sódico	0%	0%	0%	
B7	Carburo de Calcio	0%	0%	0%	
3 AG	GRICULTURA, SILVICULTURA Y O	TROS USOS I	DE LA TIERRA	l,	
A1	Fermentación Entérica	0,67%	0,52%	0,48%	
A2	Manejo del estiercol	0%	0%	0%	
4 RE	SIDUOS				
A1	Disposición de Residuos Sólidos	91,27%	84,20%	90,12%	
D1	Tratamiento de Aguas Residuales Industriales	2,19%	10,26%	4,98%	
D2	Tratamiento de Aguas Residuales domésticas	0%	0%	0%	

Tabla 16 Emisiones CH4 porcentajes por categoría

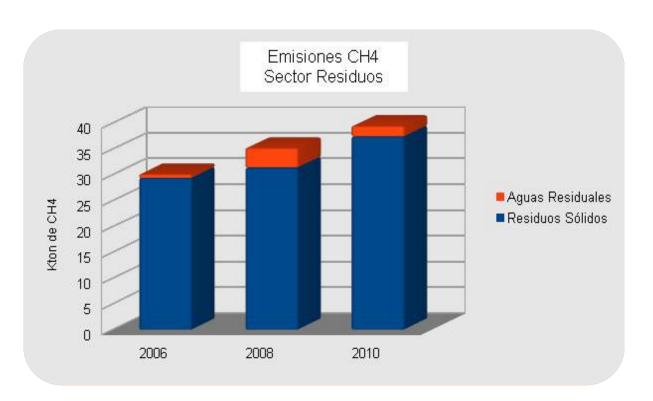


En las gráficas 24, 25 y 26 se muestran la distribución atribuidas por subsector de las emisiones de CH4.

En la gráfica 27 se muestran las emisiones comparativas por año y por sector.

Gráfica 27 Emisiones totales por categoría por año

Panorama Sectorial


Residuos

En Montevideo las fuentes de emisión son dos: el sitio de disposición final de residuos sólidos y el tratamiento anaeróbico de aguas residuales de la industria.

Se debe tener en cuenta que las aguas residuales domésticas en Montevideo, reciben un tratamiento aerobio por lo que la emisión de CH4 no se considera .

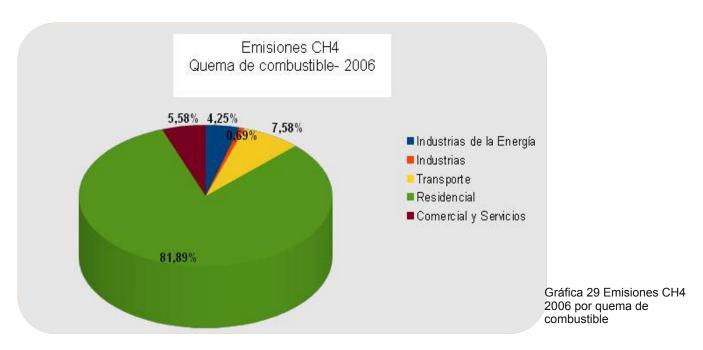
4- RESIDUOS EMISIONES CH4			
Desidues	CH4	CH4	CH4
Residuos	Kton	Kton	Kton
Disposición final	29,38	31,35	37,37
Tratamiento anaerobio industrial	0,71	3,82	2,07

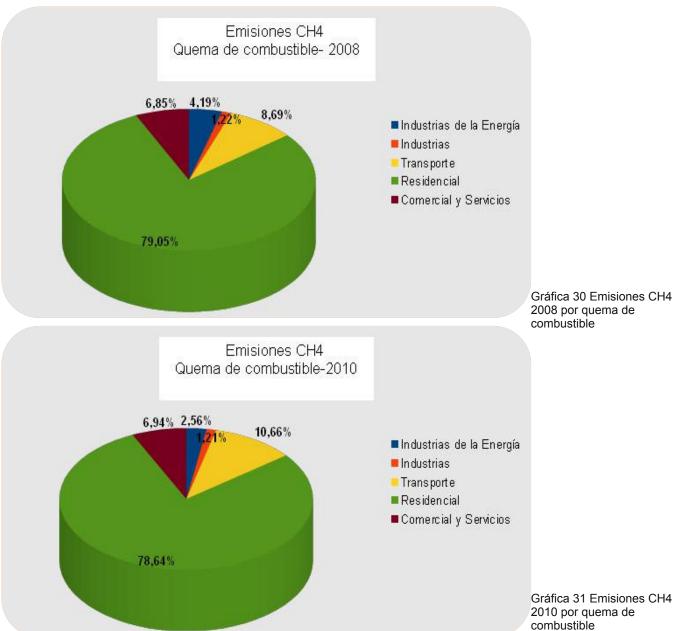
Tabla 17 Emisiones de CH4 en Sector Residuos

Gráfica 28 Emisiones CH4 por residuos por año

Energía (quema de combustibles fósiles y quema de biomasa)

Las emisiones de CH4 asociadas a este sector son debidas a la quema de combustibles fósiles y a las emisiones fugitivas de los combustibles resultantes del transporte, refinación y almacenamiento de petróleo; la distribución de gas natural y otras fugas; y la producción de carbón vegetal.


Para el Inventario de Montevideo se consideró exclusivamente la quema de combustible y las emisiones totales directas de metano en el sector energía, que corresponden a menos del 6% de las emisiones totales de Metano.


Las emisiones de Metano mayoritarias en este sector corresponden a fuentes Residenciales, debido a la quema de biomasa, seguida de emisiones provenientes delTransporte.

Las emisiones de metano asociadas a la quema de Biomasa son aproximadamente siete veces mayores a las emisiones debidas a la quema de combustible fósil.

1-ENERGÍA EMISIONES CH4							
	2006	2008	2010				
	Kton CH4	Kton CH4	Kton CH4				
Industrias de la Energía	0,080	0,078	0,047				
Industrias	0,013	0,023	0,022				
Transporte	0,143	0,162	0,195				
Residencial	1,549	1,475	1,439				
Comercial y Servicio	0,106	0,128	0,127				

Tabla 18 Emisiones de CH4 en Sector Energía

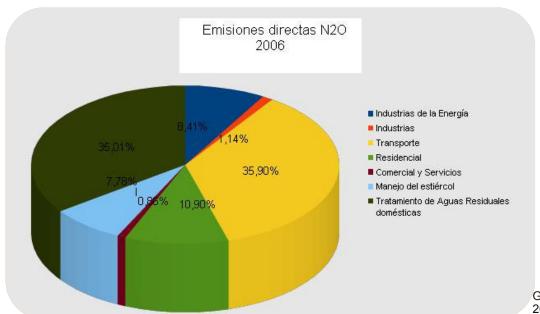

Agricultura

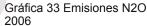
En esta actividad se consideran las emisiones de metano (CH4) provenientes de la fermentación entérica y de la gestión de estiércol proveniente de los animales de la cabaña ganadera.

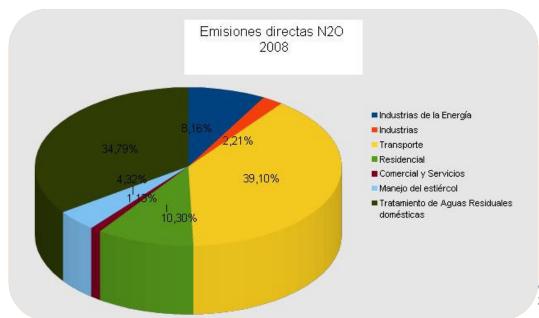
Se toma como referencia el método indicado en las Guías del IPCC para la metodología utilizada en la estimación de las emisiones de metano, originada a partir de la fermentación entérica de las categorías de animales seleccionados.

3- AGRICULTURA SILVICULTURA EMISIONES CH4						
Agricultura	2006	2008	2010			
	Kton CH4	Kton CH4	Kton CH4			
Fermentación entérica	0,215	0,195	0,199			

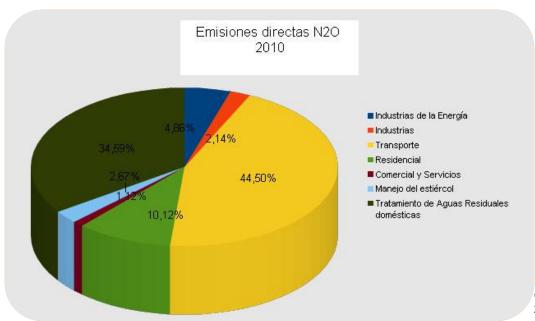
Tabla 17 Emisones de CH4 en agricultura

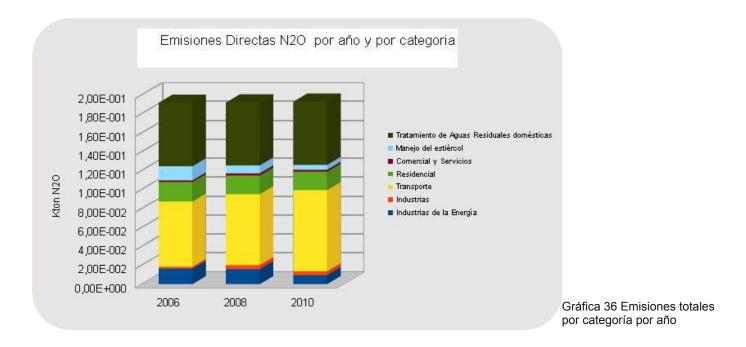

Gráfica 32 Emisiones CH4 Agricultura


ÓXIDO NITROSO


En Montevideo, las principales fuentes de emisión de este gas Corresponden a Energia (Fuentes móviles) y Residuos (tratamiento de aguas Residuales domésticas) en porcentajes similares.

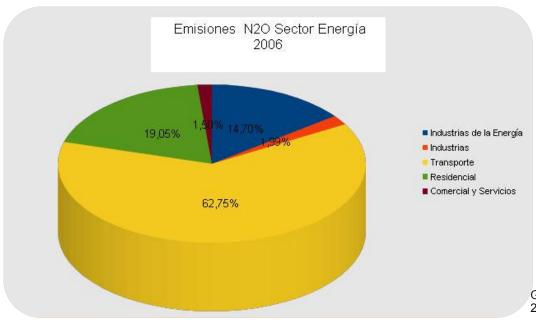
ΕM	ISIONES PORCENTUALES DI	E N2O BOB	CATEGORIA	
LIVI	ISIONES FORCENTUALES DI			
		2006	2008	2010
1 E	NERGÍA			
A1	Industrias de la Energía	8,41%	8,16%	4,86%
A2	Industrias	1,14%	2,21%	2,14%
A3	Transporte	35,90%	39,10%	44,50%
A4 a	Residencial	10,90%	10,30%	10,12%
A4b	Comercial y Servicios	0,86%	1,13%	1,12%
2 PF	ROCESOS INDUSTRIALES			
B5	Carbonato Sódico	0%	0%	0%
B7	Carburo de Calcio	0%	0%	0%
3 A	GRICULTURA, SILVICULTURA Y OT	ROS USOS D	E LA TIERRA	0
A1	Fermentación Entérica	0%	0%	0%
A2	Manejo del estiercol	7,78%	4,32%	2,67%
4 RI	ESIDUOS			
A1	Disposición de Residuos Sólidos	0%	0%	0%
D1	Tratamiento de Aguas Residuales Industriales	0%	0%	0%
D2	Tratamiento de Aguas Residuales domésticas	35,01%	34,79%	34,59%

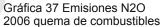

Tabla 41 Emisones de N2O totales

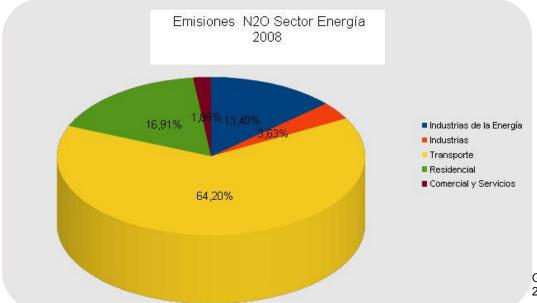


Gráfica 34 Emisiones N2O 2008

Gráfica 35 Emisiones N2O 2010


Panorama Sectorial


Energía (actividades de quema de combustibles fósiles, y de quema de Biomasa)


El Transporte genera la mayor emisión de N2O como se muestra en las Gráficas 37, 38 y 39.

1-ENERGÍA EMISIONES N2O							
	2006	2008	2010				
	Kton N2O	Kton N2O	Kton N2O				
Industrias de la Energía	0,016	0,016	0,009				
Industrias	0,002	0,004	0,004				
Transporte	0,069	0,075	0,086				
Comercial y Servicio	0,021	0,020	0,019				
Residencial	0,002	0,002	0,002				


Tabla 21 Emisiones de N2O quema de combustible

Gráfica 38 Emisiones N2O 2008 quema de combustibles

Gráfica 39 Emisiones N2O 2010 quema de combustibles

Residuos

Las emisiones en este sector son debidas a los procesos de nitrificación y desnitrificación del excremento humano, que ocurren cuando este se descarga a curso de agua (ríos, estuarios) o cuando es procesado en fosas sépticas o sistema de tratamiento de aguas servidas. En Montevideo se estiman las emisiones a partir de la población del Departamento y del consumo medio anual per capita de proteínas, dato que es publicado por el Instituto Nacional de Estadísticas.

4- RESIDUOS N2O			
Residuos	2006	2008	2010
	Kton N2O	Kton N2O	Kton N2O
Excretas humanas	0,07	0,07	0,07

Tabla 22 Emisiones de N2O Residuos

Agricultura

Se estima el óxido nitroso (N2O) producido exclusivamente durante el almacenamiento y tratamiento del estiércol antes de su depósito en los campos. El término estiércol en este apartado incluye tanto las heces como la orina (es decir, los sólidos y los líquidos) producidos por el ganado. La emisión de N2O procedente del estiércol durante su almacenamiento y tratamiento depende del contenido de nitrógeno y carbono del estiércol, así como de la duración del almacenamiento y del tipo de tratamiento.

La aireación del estiércol favorece la emisión de N2O. Por lo tanto, en esta actividad se considerarán las emisiones directas de óxido nitroso.

3- AGRICULTURA SILVIO	CULTURA EMISI	ONES N2O	
Agricultura	2006	2008	2010
	Kton N2O	Kton N2O	Kton N2O
Gestión del estiércol	0,015	0,008	0,005

Tabla 23 Emisiones de N2O Agricultura

HALOCARBUROS

Se realizó un análisis estimativo de las cantidades de halocarburos emitidas por Montevideo en los años del 2008 y 2010. Estos compuestos han venido sustituyendo a los CFC y HCFC en los sistemas de refrigeración y aire acondicionado. En las directrices IPCC del año 2006 se recomienda la clasificación del uso de los halocarbonados en los distintos tipos de aplicaciones de refrigeración o aire acondicionado, para su adecuada cuantificación, entre éstos la refrigeración doméstica, comercial, industrial, el transporte refrigerado, los sistemas de aire acondicionado estacionario y móvil.

Para el cálculo, se asume que la carga es la cantidad total importada para el país en el año en estudio a pesar de tener el conocimiento de que los compuestos involucrados poseen una extensa vida útil, siendo que aquellos utilizados en el año sean probablemente un porcentaje de los importados en el mismo. Por otra parte, la cifra de las importaciones totales es afectada por el porcentaje de población presente en Montevideo para adecuar el estimativo al departamento en estudio. Los factores de estimación empleados son los máximos en su rango buscando de esta forma demostrar que aún en las peores condiciones de emisión es insignificante frente a las emisiones de los demás gases de efecto invernadero en cuestión.

Los halocarburos no se incluyeron en las estimaciones de este inventario, sin embargo, se considera importante incluirlos en estudios posteriores.

CATEGORIA DE LAS PRINCIPALES FUENTES

En la Tabla 24 se presentan los resultados del Inventario en CO2 eq para cada sector.

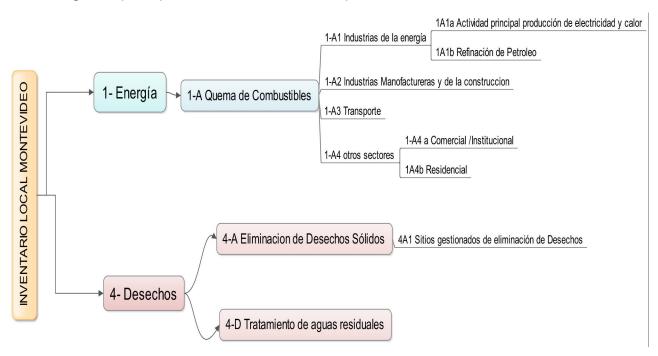

TABLA RESUMEN Kton de CO2 eq								
	Energía	Procesos Industriales	Agricultura, Silvicultura y otros usos de la Tierra	Residuos				
2006	3570,58	1,1	9,8	742,8				
2008	3861,36	1,44279	6,7	759,3				
2010	3133,35	1,78242	5,8	848,8				

Tabla 24 Emisiones Totales en CO2 equivalente

Las categorías principales son aquellas que tiene prioridad en el sistema del inventario local, dado que la estimación de sus emisiones tiene una significativa influencia en el inventario.

La identificación de las categorías principales de fuentes tiene por objeto priorizar la utilización de los recursos disponibles para la preparación de inventarios, destinándolos a la mejora de los datos disponibles, y a la realización de las mejores estimaciones posibles de las emisiones de estas categorías de fuentes a fin de reducir la incertidumbre general del inventario.

Las categorías principales del Inventario Local para Montevideo son:

INCERTIDUMBRES

Las estimaciones de las incertidumbres de las emisiones y remociones de gases efecto invernadero son un elemento esencial en un inventario de emisiones completo. No están orientadas a cuestionar la validez de las estimaciones realizadas, sino a ayudar a priorizar los esfuerzos. Las estimaciones de las emisiones y remociones de GEI presentan incertidumbres debidas principalmente a 2 causas:

- 1. Incertidumbres asociadas a los datos de actividad
- 2. Incertidumbres asociadas a los factores de emisión.

Las incertidumbres son función del gas emitido, sector, subsector o actividad que se analice, variando significativamente en cada caso. Asimismo, en virtud de las diferentes magnitudes de las emisiones obtenidas para el nivel sectorial, subsectorial o de cada actividad, sus respectivas incertidumbres influyen de manera más o menos importante en la incertidumbre de las cifras totales. El análisis incluye dos componentes: análisis cualitativo y cuantitativo.

-Análisis Cualitativo -

Los datos se evalúan de acuerdo a la incertidumbre de los mismos en: A= Incertidumbre Alta, M= Media y B= Baja incertidumbre.

Análisis de Incertidumbres de los datos recabados

La evaluación presentada en Tabla 25 se basa en el juicio del equipo que elaboró el inventario, asumiendo que se tuvo acceso a la mejor información disponible y estimando las incertidumbres asociadas a los datos de actividad en cada caso.

Las incertidumbres asociadas a los factores de emisión corresponden a los recomendados por Orientación del IPCC sobre las Buenas Prácticas y la Gestión de las Incertidumbres de los Inventarios de Gases de Efecto

Invernadero.

El objeto de este análisis es identificar los sectores donde mayores esfuerzos deberían ser destinados en futuros inventarios para mejorar la exactitud de los mismos y orientar las decisiones sobre la elección de las

Tabla de Incertidumbres			
	CO2	CH4	N2O
Energía	В	Α	Α
Procesos Industriales	Α		
Agricultura, Silvicultura y otros usos de la Tierra	Α	М	M
Residuos		В	М

Tabla 25 Estimación de Incertidumbres

EVALUACIÓN DE RESULTADOS

Los resultados permiten realizar las siguientes afirmaciones:

En Montevideo, los sectores de mayor contribución de GEI son el Sector Energía seguido del Sector Residuos.

Dentro del sector Energía, los subsectores con mayor contribución a las emisiones locales y con gran potencial de mitigación dentro de las posibilidades de gestión del gobierno local es el de transporte

Los sectores Residencial y Comercial, y Servicios tienen un impacto relativo, respecto a emisiones directas, pero si se considera el uso de energía eléctrica su importancia relativa aumenta. Las medidas con mayor potencial de mitigación provienen de una disminución en la demanda de energía de la red.

El tratamiento de residuos sólidos es competencia del Gobierno Departamental. En el año 2012 comenzó a funcionar una planta de captura de biogas, con la que las emisiones asociadas a los residuos disminuirán en forma importante.

Agradecimientos

La información que se procesó en este informe proviene de diversas fuentes públicas y privadas. El equipo de trabajo agradece la colaboración tanto de las instituciones como de los técnicos contactados, que contribuyeron generosamente y se tomaron el tiempo de atender a nuestros pedidos de informes. Así mismo se identificaron vacíos de información que deben ser completados para mejorar la calidad de la estimación de toneladas de CO2.

BIBLIOGRAFÍA

DINAMA- Unidad de Cambio Climático. Inventario de Gases Efecto Invernadero (INGEI 1999-2004).

"Ciencias de la Tierra y del Medio Ambiente", Luis Echarri, 1998, Ed. Teide.

UTE – Gerencia planificación de inversiones y medio ambiente. "Cálculo del factor de emisiones de CO2" del sistema eléctrico uruguayo 2007"

MIEM – Memoria de actividades efectuadas en el año 2006 y lineamientos para el año 2007.

IPCC – 1996 "Revised IPCC Guidelines for national greenhouse inventories, IPCC National Greenhouse Gas Inventories Programme".

INE 2006 Encuesta Nacional de Hogares Ampliada 2006- Uruguay.

PLAN CLIMATICO de la Region Metropolitana de Uruguay. Proyecto URU/09/003- año 2012 disponible en el sitio: http://www.montevideo.gub.uy/ciudadania/desarrolloambiental/documentos

Inventario de Emisiones de Gases Efecto Invernadero 2006-Montevideo: http://www.montevideo.gub.uy/ciudadania/desarrolloambiental/documentos

ABREVIATURAS

CH4 Metano

CO2 Dióxido de carbono

CO2eq Dióxido de Carbono equivalente

HFC Hidrofluorocarbonados

N2O Oxido Nitroso

PFC Perfluorocarbonados SF6 Hexafluoruro de azufre

ANCAP Administración Nacional de Combustibles, Alcohol y Portland

BEM Balance Energético Nacional

DIEA Dirección de Estadísticas Agropecuarias
DINAMA Dirección Nacional de Medio Ambiente
DUCSA Distribuidora Uruguaya de Combustible SA

FE Factor de emision

GEI Gases Efecto Invernadero

ICLEI Gobiernos Locales por la Sustentabilidad

IdeM Intendencia de Montevideo

INE Instituto Nacional de Estadísticas

IPCC Panel Integubernamental de Cambio Climático MGAP Ministerio de Ganadería, Agricultura y Pesca MIEM Ministerio de Industria Energia y Minería.

MTOP Ministerio de Transporte y Obras Públicas

MVOTMA Ministerio de Ordenamiento Territorial y Medio Ambiente

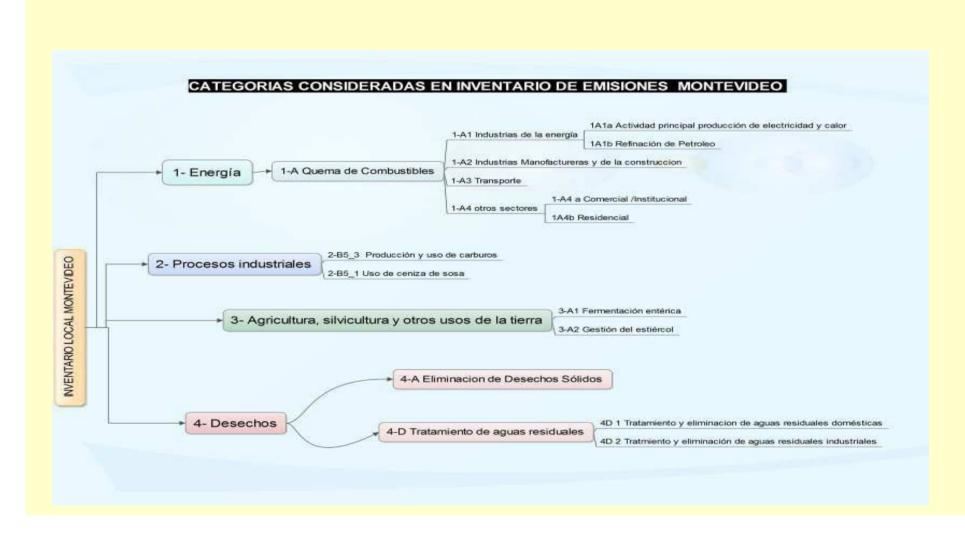
OPYPA- Oficina de Programación y Política Agropecuaria

PCA Potencial de Calentamiento Mundial UCC Unidad de Cambio Climático (DINAMA)

UTE Administración Nacional de Usinas y Trasmisiones Eléctricas

INDICE

INDICE DE CONTENIDOS	PAGINA
Créditos	2
Presentación	3
Contenido General	4
Introducción	6
Sectores	7
Alcances	8
Resumen de resultados 2006	9
Resumen de resultados 2008	10
Resumen de resultados 2006	11
Marco Teórico	13
Contribución Relativa al Calentamiento Global	13
Estructura y contenido del Inventario GEI para Montevideo.	15
Sectores Considerados	16
Energía	16
Procesos Industriales Agricultura, Silvicultura y Otros Usos de la Tierra.	17
Residuos	17
Información y Arreglos Institucionales-	18
Dióxido de Carbono	19
Panorama Sectorial	20
Energía-Actividades de Quema de Combustible	23
Energía-Subsector Industrial	23
Energía-Subsector Transporte	25
Energía-Subsector Comercial y Servicios	27
Energía-Subsector Residencial	28
Actividades de Quema de Biomasa Partida Informativa	30
Procesos Industriales	32
Metano	33 34
Panorama Sectorial	34 37
Residuos	37 37
Energía-quema de combustibles fósiles y quema de Biomasa)	38
Agricultura	40
Oxido Nitroso	41
Panorama Sectorial	43
Energía-quema de combustibles fósiles y quema de Biomasa)	43
Residuos	45
Agricultura	45
Halocarburos	46
Categoría de las principales Fuentes	47
Incertidumbre	48
Evaluación de Resultados	50
Bibliografía	51
Abreviaturas	52
Indice	53


ANEXO DATOS

INDI	CE DE GRÁFICOS	PAGINA
1	Resumen de Inventarios	4
2	Emisiones 2006 por Sector	5
3	Emisiones 2008 por Sector	5
4	Emisiones 2010 por Sector	5
5	Emisiones CO2 2006 por Categoría	21
6 7	Emisiones CO2 2008 por Categoría	21 21
8	Emisiones CO2 2010por Categoría Emisiones totales por categoría por año	21 22
9	Emisiones CO2 Energía 2006	23
10	Emisiones CO2 Energía 2008	24
11	Emisiones CO2 Energía 2010	24
12	Emisiones CO2 Industria 2006	26
13	Emisiones CO2 Industria 2008	26
14	Emisiones CO2 Industria 2010	26
15	Emisiones de CO2 Transporte	27
16	Emisiones CO2 Comercio 2006	29
17	Emisiones CO2 Comercio 2008	29
18 19	Emisiones CO2 Comercio 2010 Emisiones CO2 Residencial 2006	29 31
20	Emisiones CO2 Residencial 2008	31
21	Emisiones CO2 Residencial 2010	31
22	Emisiones de CO2 por quema de Biomasa	32
23	Emisiones de CO2 Procesos Industriales	33
24	Emisiones CH4 2006 por Categoría	35
25	Emisiones CH4 2008 por Categoría	35
26	Emisiones CH4 2010por Categoría	35
27	Emisiones totales por categoría por año	22
28	Emisiones CH4 por residuos por año	37
29 30	Emisiones CH4 2006 por quema de combustible Emisiones CH4 2008 por quema de combustible	39 39
31	Emisiones CH4 2000 por quema de combustible Emisiones CH4 2010 por quema de combustible	39
32	Emisiones CH4 Agricultura	40
33	Emisiones N2O 2006	42
34	Emisiones N2O 2008	42
35	Emisiones N2O 2010	42
36	Emisiones totales por categoría por año	43
37	Emisiones N2O 2006 quema de combustibles	44
38	Emisiones N2O 2008 quema de combustibles	44
39	Emisiones N2O 2010 quema de combustibles	44
INIDI	OF DE TABLAC	DACINIA
וטטוו	CE DE TABLAS	PAGINA
1	Resumen Inventario GEI 2006 (recalculo)	9
2	Resumen Inventario GEI 2008	10
3	Resumen Inventario GEI 2010	11
4 5	Resumen Emisiones GEI 2006 Resumen Emisiones GEI 2008	14 14
6	Resumen Emisiones GEI 2000 Resumen Emisiones GEI 2010	14
7	Emisiones de CO2, Porcentaje por categoría	20
8	Emisiones de CO2 Energía	23
9	Emisiones CO2 por consumo eléctrico.	24
10	Emisiones CO2 por subsector Industria Manofacturera.	25
11	Emisiones de CO2por subsector Transporte	27
12	Emisiones de CO2 por subsector Comercial y Servicios	28
13	Emisiones de CO2 por subsector Residencial	30
14	Emisiones de CO2 por quema de Biomasa	32
15 16	Emisiones de CO2 Procesos Industriales	33
16 17	Emisiones de CH4, Porcentaje por categoría Emisiones de CH4 en Sector Residuos	34 37
18	Emisiones de CH4 en Sector Energía	38
19	Emisiones de CH4 en agricultura	40
20	Emisiones de N2O, Porcentaje por categoría	41
21	Emisiones de N2O quema de combustibles fósiles	43
22	Emisiones N2O Residuos	45
23	Emisiones N2O Agricultura	45
24	Emisiones Totales en CO2eq	47
25	Estimación de Incertidumbre	49

ANEXO I

Tablas Resumen del Inventario de Gases de Efecto Invernadero – Montevideo

RECALCULO DEL INVENTARIO 2006, e INVENTARIOS 2008 Y 2010

1-ENERGIA

Referencia en las tablas: * Instituto Nacional de Estadistica. ** Balance Enenrgético NAcional *** DUCSA- Distribuidora Uruguaya de Combustibles.

1 A3 Emisiones de CO2 por quema de combustibles en transporte

Información proporcionada por BEN, por poblacion, y DUCSA específicamente para el departamento de Montevideo

1 A4b / 1 A4a 1 A2 Emisiones de CO2 en sector Residencial /Comercial y Servicios/ Industria.

Datos de Balance Energético Nacional (MIEM) ponderados por Población (INE)

http://www.dne.gub.uy/publicaciones-y-estadisticas/planificacion-y-balance/estadisticas/

Matrices de balance 2000-2010 //Balance 2000-2012 para combustible rodoviario y factores de emisión

http://www.ine.gub.uy/socio-demograficos/proyecciones2008.asp

Población Total de Ambos Sexos proyectada según departamento de residencia habitual al 30 de junio de cada año. Período 1996 - 2025

http://www.ine.gub.uy/actividad/energia2008.asp

Consumo de energía eléctrica, según tipo de consumidor y grandes áreas (en Giga-Watt-hora). Período 1995 - 2008

Consumo de energía eléctrica por año, según tipo de consumidor y grandes áreas (en Giga-WATT- hora) Período 2007 - al último dato disponible

1-A1 Emisiones de CO2 por quema de combustibles en industrias de la energía

Datos Proporcionados por : ANCAP Consumos en la refineria de La Teja Y Ute Consumos en Centrales Térmicas.

EMISIONES DE CO2 POR QUEMA DE COMBUSTIBLES EN INTENDENCIA

Información proporcionada por DUCSA específicamente para el departamento de Montevideo.

Todos los combustibles por tipo de cliente: Intendencia

2 PROCESOS

Dirección Nacional de Aduanas, Lucia

http://servicios.aduanas.gub.uy/luciapub/luciapublico.htm

Partidas arancelarlas 283620000 v 284910000

Se supone que Montevideo toma el 75% de las importaciones del año

3 AGRICULTURA Y SILVICULTURA

MGAP/DICOSE

http://www.mgap.gub.uy/DGSG/DICOSE/dicose.htm

DATOS DE LA DECLARACIÓN JURADA ANTE DICOSE por Departamento

No se cuenta con suficiente información para evaluar si los cambios en las prácticas agrícolas de la zona rural del Departamento son significativos en la captura del Carbono y Nitrógeno en el suelo. El crecimiento de la ciudad sobre la zona rural si bien esta comprobado, es relativamente es lento como para ser significativo en años consecutivos.

En Montevideo, no se han registrado prácticas de forestación mas allá de la reposición de ejemplares en el área urbana, que corresponde generalmente a la sustitución de un ejemplar viejo por uno joven.

En Consecuencia en la categoría agricultura, silvicultura y otros usos de la tierra se consideró el manejo de ganado, a efectos de evaluar de forma significativa dentro del inventario.

4 RESIDUO

4 A Sitio de Disposición Final De la Intendencia de Montevideo

De los residuos que ingresan al sitio de disposición final se consideraron las categorias

Domiciliario, Origen animal, Origen vegetal, Barros y Iodos, Alimentos, Medicamentos y cosméticos, Químicos.

4 D1 Tratamiento y eliminación de aguas residuales domésticas

FAO gramos de proteína por año valor al 2005-2007 último publicado

www.fao.org/fileadmin/templates/ess/documents/food security statistics/FoodConsumptionNutrients en.xls

Dirección de Estadística de la FAO.

4 D2 Tratamiento y eliminación de aguas residuales industriales

Unidad Efluentes Industriales/ Servicio de Evaluación de la calidad y Control Ambiental/Departmaento de Desarrollo Ambiental/ Intendencia de Montevideo

PARTIDAS INFORMATIVAS

Las emisiones de CO2 de Quema de Biomasa se consideran como una partida Informativa.

Las emisiones de CH4 y N2O asociadas a la quema de biomasa se consideran en las emisiones en el sector Energía

1-ENERGIA

1- A1 EMISIONES DE CO2 POR QUEMA DE COMBUSTIBLES EN INDUSTRIAS DE LA ENERGÍA										
	COMBUSTIBLE	CONSUMO	Factor de Conversión	Consumo	FE de Carbono	FE de CH4	FE de N2O	Emisiones CO2	Emisiones CH4	Emisiones N2O
		Ktep	TJ/Ktep	TJ	kg/TJ	Kg/TJ	kg/Tj	GgCO2	GgCH4	Gg N2O
Refinerías	Fuel Oil	121,633	41,868	5092,518	77400	3,000	0,600	394,161	0,015	0,003
CentralesTérmi	Fuel Oil	413,460	41,868	17310,738	77400	3,000	0,600	1339,851	0,052	0,010
cas	Gasoil	105,292	41,868	4408,348	74100	3,000	0,600	326,659	0,013	0,003
							Total Kton	2060,67	0,0804	0,0161

1- A2 EMISIONES DE CO2 POR QUEMA DE COMBUSTIBLES EN INDUSTRIAS										
COMBUSTIBLE	CONSUMO	Factor de Conversión	Consumo	FE de Carbono	Fraccion del carbono oxidado	FE de CH4	FE de N2O	Emisiones CO2	Emisiones CH4	Emisiones N2O
	Ktep	TJ/Ktep	TJ	Kg/TJ	GgC	Kg/TJ	Kg/TJ	GgCO2	GgCH4	Gg N2O
Gas Natural	24,348	41,870	1019,451	56100	1	1	0,1	57,191	1,02E-03	1,02E-04
Supergas	0,000	41,868	0,000	63100	1	1	0,1	0,000	0,00E+00	0,00E+00
Propano	1,934	41,868	80,990	61600	1	1	0,1	4,989	8,10E-05	8,10E-06
Butano	0,031	41,868	1,316	61600	1	1	0,1	0,081	1,32E-06	1,32E-07
Gasoil	2,960	41,868	123,943	74100	1	3	0,6	9,184	3,72E-04	7,44E-05
Diesel Oil	0,940	41,868	39,361	74100	1	3	0,6	2,917	1,18E-04	2,36E-05
Fuel Oil	64,930	41,868	2718,507	77400	1	3	0,6	210,412	8,16E-03	1,63E-03
Keroseno	0,002	41,870	0,073	71900	1	3	0,1	0,005	2,18E-07	7,28E-09
Nafta	0,028	41,868	1,179	73300	1	3	0,6	0,086	3,54E-06	7,07E-07
Leña	78,563	42,868	3367,833	11200	1	1	0,1	37,720	3,37E-03	3,37E-04
							SubTotal Kton	322,59	0,0131	0,0022
							Biomasa	37,720		
							Total Kton	284,87	0,0131	0,0022

1-A3 EMISIONES DE CO2 POR QUEMA DE COMBUSTIBLES EN TRANSPORTE TERRESTRE										
COMBUSTIBLE	Fraccion del carbono oxidado	FE de CH4	FE de N2O	Emisiones CO2	Emisiones CH4	Emisiones N2O				
	Ktep	TJ/Ktep	TJ	Kg CO2/TJ	GgCO2	kg/TJ	Kg/TJ	GgCO2	GgCH4	Gg N2O
Gasolina	104,967	41,868	4394,749	69300	1	25	8	304,556	1,10E-01	3,52E-02
Gasoil	205,252	41,868	8593,488	74100	1	3,9	3,9	636,777	3,35E-02	3,35E-02
								941,33	0,1434	0,0687

1 A4a EMISIONES DE CO2 POR QUEMA DE COMBUSTIBLES EN COMERCIALES Y SERVICIOS 2006										
COMBUSTIBLE	CONSUMO	Factor de Conversión	Consumo	FE de Carbono	Fraccion del carbono oxidado	FE de CH4	FE de N2O	Emisiones CO2	Emisiones CH4	Emisiones N2O
	Ktep	TJ/Ktep	TJ	Kg/TJ	GgC	Kg/TJ	Kg/TJ	GgCO2	GgCH4	Gg N2O
Gas Natural	4,586	41,868	191,987	56100	0,995	5	0,1	10,717	9,60E-04	1,92E-05
Supergas	0,231	41,868	9,691	63100	1	5	0,1	0,611	4,85E-05	9,69E-07
Propano	1,177	41,868	49,271	61600	1	5	0,1	3,035	2,46E-04	4,93E-06
Gasoil	6,740	41,868	282,169	74100	1	10	0,6	20,909	2,82E-03	1,69E-04
Diesel Oil	0,164	41,868	6,864	74100	0,995	10	0,6	0,506	6,86E-05	4,12E-06
Fuel Oil	4,817	41,868	201,690	77400	1	10	0,6	15,611	2,02E-03	1,21E-04
Keroseno	0,015	41,868	0,637	71900	1	10	0,6	0,046	6,37E-06	3,82E-07
Nafta	0,000	41,868	0,000	73300	1	10	0,6	0,000	0,00E+00	0,00E+00
Leña	7,913	41,868	331,306	112000	1	300	4	37,106	9,94E-02	1,33E-03
							SubTotal Kton	88,54	0,1056	0,0016
							Biomasa	37,106		
							Total Kton	51,43	0,1056	0,0016

1 A4b EMISIC	1 A4b EMISIONES DE CO2 POR QUEMA DE COMBUSTIBLES EN RESIDENCIALES 2006										
COMBUSTIBLE	CONSUMO	Factor de Conversión	Consumo	FE de Carbono	Fraccion del carbono oxidado	FE de CH4	FE de N2O	Emisiones CO2	Emisiones CH4	Emisiones N2O	
	Ktep	TJ/Ktep	TJ	Kg/TJ	GgC	Kg/TJ	Kg/TJ	GgCO2	GgCH4	Gg N2O	
Gas Natural	5,275	41,868	220,870	56100	0,995	5	0,6	12,329	1,10E-03	1,33E-04	
Supergas	37,009	41,868	1549,491	63100	1	5	0,1	97,773	7,75E-03	1,55E-04	
Propano	0,284	41,868	11,893	61600	1	5	0,1	0,733	5,95E-05	1,19E-06	
Gasoil	0,243	41,868	10,194	74100	1	10	0,6	0,755	1,02E-04	6,12E-06	
Diesel Oil	0,000	41,868	0,000	74100	1	10	0,6	0,000	0,00E+00	0,00E+00	
Fuel Oil	10,429	41,868	436,644	77400	1	10	0,6	33,796	4,37E-03	2,62E-04	
Keroseno	2,516	41,868	105,338	71900	1	10	0,6	7,574	1,05E-03	6,32E-05	
Leña	119,954	41,868	5022,253	112000	1	300	4	562,492	1,51E+00	2,01E-02	
Carbon Vegetal	3,330	41,868	139,420	112000	1	200	1	15,615	2,79E-02	1,39E-04	
							SubTotal Kton	731,07	1,5490	0,0208	
							Biomasa	578,107			
							Total Kton	152,96	1,5490	0,0208	

1-ENERGÍA										
	CO2	CH4	N2O	CH4	N2O	TOTAL				
	(Kton)	(Kton)	(Kton)	(Kton CO2 eq)	(Kton CO2 eq)	CO2 Eq				
Industrias de la Energía	2060,671	0,080	0,016	1,689	4,987	2067,35				
Industrias	284,866	0,013	0,0022	0,275	0,675	285,82				
Transporte	941,334	0,143	0,069	3,011	21,289	965,63				
Residencial	152,960	1,549	0,021	32,529	6,463	191,95				
Comercial y Servicio	51,435	0,106	0,0016	2,217	0,510	54,16				

RESULTADOS ENERGIA SUMANDO EMISIONES POR CONSUMO ELÉCTRICO									
Emisiones CO2	Directas	Energía eléctrica	TOTALES						
	(Kton CO2 eq)	(Kton CO2 eq)	(Kton CO2 eq)						
Transporte	965,633		965,63						
Residencial	191,952	726,463	918,41						
Comercial y Servicio	54,161	480,132	533,35						
Industrias	285,816	514,741	800,56						
Refinería	394,161		394,16						

1942,15

3612,12

1891,72

Totales

2 -PROCESOS

2 B5_1 EMISIONES PROCESOS POR UTILIZACIÓN DE CARBONATO SÓDICO									
Uso de	Importado	Factor de Ponderación	FE	CO2	CO2				
Carbonato Sódico	ton		(ton CO2/t Na2CO3)	ton	Kton				
	2281	0,75	0,415	717,534	0,717				

2 B7_3 EMISIONES PROCESOS PRODUCCIÓN DE CARBURO DE CALCIO										
Uso de Carburo de Calcio	Importado	Factor de Ponderación	Factor de emisión	CO2	CO2					
	ton		(ton CO2/t carburo producido)	kg	Kton					
	475	0,75	1,1	391,875	0,391875					

2 DDOCE	2- PROCESOS										
Z- PROCE	303										
	CO2 (Kton)	TOTAL									
	(Kton CO2 eq)	(Kton CO2 eq)									
Carbonato Sódico	0,718	0,718									
Carburo de calcio	0,392	0,392									
Totales		1,11									

3 -AGRICULTURA, SILVICULTURA Y OTROS USOS DE LA TIERRA

3 A1 FERMENTACIÓN ENTÉRICA										
Tipo de Ganado	Numero de Animales	FE	CH4	FE del aprovechamien to del estiércol	CH4	Emisiones	TOTAL			
	Unidades	kg CH4/ cabeza/año	t/año	kg/cabeza/año	t/año	Kotn CH4	(Kton CO2 eq)			
Ganado lechero	233	63	14,69	1	0,23	0,01	0,313			
Ganado no lechero	2682	56	150,18	1	2,68	0,15	3,210			
Ovejas	1724	5	8,62	0,15	0,26	0,01	0,186			
Caballos	171	18	3,07	1,64	0,28	0,00	0,070			
Cerdos	7315	1	7,32	1	7,32	0,01	0,307			
Aves de Corral	1023098	0	0,00	0,02	20,46	0,02	0,430			
Mulas y asnos	0	10	0,00	0,9	0,00	0,00	0,000			
Cabras	17	5	0,08	0,17	0,00	0,00	0,002			
				То	tal Kton	0,22	4,52			

3 A2 GESTIÓN D	3 A2 GESTIÓN DEL ESTIÉRCOL										
				EM	ISIONES PO	R TRATAMIENT	0				
Tipo de Ganado	Número de Animales	Nitrógeno excretado por animal	Laguna anaerobia	Sistema líquido	Almacenam iento sólido y parcelas secas		Praderas y pastizales	Otros			
	Unidades	Kg N/animal/año	Kg N /año	Kg N /año	Kg N /año	Kg N /año	Kg N /año	Kg N /año			
Ganado lechero	233	70,1	3758,8	9805,6	9805,6	12747,3	5883,4	0,0			
Ganado no lechero	2682	52,6	0,0	0,0	70477,7	0,0	139545,9	28191,1			
Ovejas	1724	19,2	0,0	0,0	29154,9	0,0	33130,5	0,0			
Caballos	171	92,3	0,0	0,0	13875,8	0,0	15610,3	0,0			
Cerdos	7315	28,7	46110,5	108988,4	104796,5	0,0	0,0	41918,6			
Aves de Corral	1023098	0,9	529199,7	0,0	0,0	0,0	370439,8	529199,7			
Mulas y asnos	0	41,1	0,0	0,0	0,0	0,0	0,0	0,0			
Cabras	17	20,0	0,0	0,0	0,0	0,0	0,0	0,0			
To	otales por Trata	amiento (Kg/N)	579068,96	118793,97	228110,53	12747,27	564609,85	599309,37			

3 A2 GESTIÓN DEL ESTIÉRCOL										
Tratamiento	Total N Kg N/año	FE Kg N20/Kg N	N2O Gg N2O/año	CO2 eq						
Laguna angarahia	J	0 0	(44/28)	Gg O 26						
Laguna anaerobia	579068,96	0,0020	1,16E-03	0,36						
Sistema líquido	118793,97	0,01	5,94E-04	0,18						
Almacenamiento sólido y										
parcelas secas	228110,53	0,0050	1,14E-03	0,35						
Abonado diario	12747,27	0,00	0,00E+00	0,00						
Praderas y pastizales	564609,85	0,00	0,00E+00	0,00						
otros	599309,37332	0,02	1,20E-02	3,71571811						
		TOTAL	0,015	4,61						

3- AGRICUL	TURA SIL	VICULTUI	RA		
Agricultura	CH4	N2O	CH4	N2O	TOTAL
	(Kton)	(Kton)	(Kton CO2 eq)	(Kton CO2 eq)	(Kton CO2 eq)
Gestión del estiércol		0,015		4,612	4,612
Fermentación entérica	0,215		4,519		4,519

4 -RESIDUOS

4 A1 EMISIONES DIRECTAS DE CH4 POR RESIDUOS EN VERTEDERO Tasa potencial de Tasa real de Total neto Total anual de generación de generación de anual de Total Fracción del **RSU** metano por metano por Fracción del metano emisiones Fracción de COD que Relación de unidad de unidad de eliminados en FCM ** carbono liberado generado COD en los RSU realmente se conversión desperdicios. desperdicios. como metano vertederos degrada (Kton) (GgCH4/GgRSU) (GgCH4/GgRSU) Kton CO2 eq 616,979 487,974 1 0,1 0,7 0,5 1,3 0,1 0,1 29,4

Factor de corrección para el metano (FCM) Tipo de vertedero	Proporción de desperdicios (por peso) de cada tipo de vertedero de residuos sólidos	Factor de corrección para el metano (FCM)	FCM medio ponderado para cada tipo de vertedero de residuos sólidos
			Υ
	W	X	Y=WxX
controlados anaeróbico	1	1	1
no controlados profundos (mas de 5mts de desperdicios)	0	0,8	0
no controlados poco profundos (menos de 5mts de desperdicios)	0.15	0.4	0.06
onits de desperdicios)	0,15	0,4	0,06
Total	1,15	2,2	1,06

4 D1 TRATAMIENTO Y ELIMINACIÓN DE AGUAS RESIDUALES DOMÉSTICAS										
Consumo medio anual per cápita de proteínas	Población	Fracción de N en la proteína	Factor de	Factor de proteinas	Factor de emisión	N efluente	Emisión	Emisiones de N2O	Total emisiones	
(kg/persona.año)	(INE)	(kg N/kg proteína)	proteinas co eliminadas	Industriales 0	Kg N20/kgN	(kg N-N2O / año)	(kg N2O-N/kg N en el excremento)	Kton N2O	Kton CO2eq	
28,8	1345010	0,2	1,1	1,3	0,0	8521983,4	66958,4	0,1	20,757	

4 D2 TRATAMI	ENTO Y ELIMINA	ACIÓN DE AG	UAS RESIDU	JALES INDUSTRI	ALES
Efluentes anaerobios	Efluente anual de aguas residuales m3/año	DQO total generada Gg	Metano recuperado	Emisiones netas de CH4 Gg	Emisión total (Kton CO2 eq)
Desechos industriales anaerobios	6000	3,5	0,0	0,7	14,810

4- RESIDUOS					
Residuos	CH4	N2O	CH4	N2O	Total
redidued	Kton	Kton	Kton CO2 eq	Kton CO2eq	Kton CO2eq
Disposición final	29,38		616,98		616,98
Tratamiento anaerobio industrial	0,71		14,81		14,81
Excretas humanas		0,07		20,757	20,76
				TOTAL	652,55

EMISIONES TOTALES POR CATEGORIA

Emisiones	CO2 kton	N2O kton	CH4 kton	CO2eq kton
TOTAL	3492,37	0,19	32,19	4324,27
1 ENERGÍA	3491,3	0,1094	1,9	3570,6
 Industrias de la Energía Industrias Transporte Residencial 	2060,67 284,87 941,33 152,96	1,61E-02 2,18E-03 6,87E-02 2,08E-02	0,0804 0,0131 0,1434 1,5490	2067,59 285,86 966,06 196,60
A4b Comercial y Servicios 2 PROCESOS INDUSTRIALES	51,43 1,1	1,65E-03	0,1056	<i>54,48</i> 1,1
B5 Carbonato Sódico B7 Carburo de Calcio	0,72 0,39 OS DE LA			0,72 0,39
3 AGRICULTURA, SILVICULTURA Y OTROS USO TIERRA	US DE LA	0,01	0,22	9,8
A1 Fermentación Entérica A2 Manejo del estiercol		1,49E-02	0,22	5,16 4,61
4 RESIDUOS		0,07	30,09	742,8
 Disposición de Residuos Sólidos Tratamiento de Aguas Residuales Industriales Tratamiento de Aguas Residuales domésticas 		6,70E-02	29,38 0,71	705,12 16,93 20,76
PARTIDAS INFORMATIVAS	652,9			652,9
Quema de biomasa	652,93			652,93

Diferencias encontradas en los valores netos respecto al inventario Metropolitano publicado, se deben a:

¹⁻ Se revisaron los factores de emisión para ajustarlos a los FE IPCC 2006

²⁻ Se ajustaron algunos valores de consumo de combustible especialmente para transporte aumentando ligeramente por inclusión de transporte de carga.

³⁻ Se incluyeron en el presente inventario el las emisiones de N20 y CH4 incluso cuando no son las mayoritarias

⁴⁻ Se recalculó el consumo de industrias de la energía considerando el kep de la BEN y no de bibliografía como se realizo en el inventario Metropolitano-

1-ENERGIA

1- A1 EMISIONES DE CO2 POR QUEMA DE COMBUSTIBLES EN INDUSTRIAS DE LA ENERGÍA										
	COMBUSTIBLE	CONSUMO	Factor de Conversión	Consumo	FE de Carbono	FE de CH4	FE de N2O	Emisiones CO2	Emisiones CH4	Emisiones N2O
		Ktep	TJ/Ktep	TJ	kg/TJ	Kg/TJ	kg/Tj	GgCO2	GgCH4	Gg N2O
Refinerías	Fuel Oil	111,160	41,868	4654,062	77400	3,000	0,600	360,224	0,014	0,003
CentralesTérmi	Fuel Oil	318,619	41,868	13339,923	77400	3,000	0,600	1032,510	0,040	0,008
cas	Gasoil	193,367	41,868	8095,878	74100	3,000	0,600	599,905	0,024	0,005
							Total Kton	1992,64	0,0783	0,0157

1- A2 EMISIO	NES DE CO2	2 POR QUEI	MA DE CO	MBUSTIBLES	EN INDUS	TRIAS				
COMBUSTIBLE	CONSUMO	Factor de Conversión	Consumo	FE de Carbono	Fraccion del carbono oxidado	FE de CH4	FE de N2O	Emisiones CO2	Emisiones CH4	Emisiones N2O
	Ktep	TJ/Ktep	TJ	Kg/TJ	GgC	Kg/TJ	Kg/TJ	GgCO2	GgCH4	Gg N2O
Gas Natural	14,432	41,870	604,252	56100	1	1	0,1	33,899	6,04E-04	6,04E-05
Supergas	0,000	41,868	0,018	63100	1	1	0,1	0,001	1,79E-08	1,79E-09
Propano	2,268	41,868	94,956	61600	1	1	0,1	5,849	9,50E-05	9,50E-06
Butano	0,051	41,868	2,154	61600	1	1	0,1	0,133	2,15E-06	2,15E-07
Gasoil	44,162	41,868	1848,959	74100	1	3	0,6	137,008	5,55E-03	1,11E-03
Diesel Oil	1,265	41,868	52,974	74100	1	3	0,6	3,925	1,59E-04	3,18E-05
Fuel Oil	110,825	41,868	4640,024	77400	1	3	0,6	359,138	1,39E-02	2,78E-03
Keroseno	0,000	41,870	0,000	71900	1	3	0,1	0,000	0,00E+00	0,00E+00
Nafta	0,100	41,868	4,174	73300	1	3	0,6	0,306	1,25E-05	2,50E-06
Leña	55,636	42,868	2385,010	11200	1	1	0,1	26,712	2,39E-03	2,39E-04
							SubTotal Kton	566,97	0,0227	0,0042
							Biomasa	26,712		
							Total Kton	540,26	0,0227	0,0042

1-A3 EMISIONES DE CO2 POR QUEMA DE COMBUSTIBLES EN TRANSPORTE TERRESTRE										
COMBUSTIBLE	CONSUMO	Factor de Conversión	Consumo	FE de Carbono	Fraccion del carbono oxidado	FE de CH4	FE de N2O	Emisiones CO2	Emisiones CH4	Emisiones N2O
	Ktep	TJ/Ktep	TJ	Kg CO2/TJ	GgCO2	kg/TJ	Kg/TJ	GgCO2	GgCH4	Gg N2O
Gasolina	122,602	41,868	5133,089	69300	1	25	8	355,723	1,28E-01	4,11E-02
Gasoil	207,782	41,868	8699,429	74100	1	3,9	3,9	644,628	3,39E-02	3,39E-02
								1000,35	0,1623	0,0750

1-A4 a EMISIONES DE CO2 POR QUEMA DE COMBUSTIBLES COMERCIALES Y SERVICIOS											
COMBUSTIBLE	CONSUMO	Factor de Conversión	Consumo	FE de Carbono	Fraccion del carbono oxidado	FE de CH4	FE de N2O	Emisiones CO2	Emisiones CH4	Emisiones N2O	
	Ktep	TJ/Ktep	TJ	Kg/TJ	GgC	Kg/TJ	Kg/TJ	GgCO2	GgCH4	Gg N2O	
Gas Natural	5,950	41,868	249,095	56100	0,995	5	0,1	13,904	1,25E-03	2,49E-05	
Supergas	0,555	41,868	23,237	63100	1	5	0,1	1,466	1,16E-04	2,32E-06	
Propano	0,050	41,868	2,097	61600	1	5	0,1	0,129	1,05E-05	2,10E-07	
Gasoil	7,384	41,868	309,147	74100	1	10	0,6	22,908	3,09E-03	1,85E-04	
Diesel Oil	0,411	41,868	17,190	74100	0,995	10	0,6	1,267	1,72E-04	1,03E-05	
Fuel Oil	14,681	41,868	614,653	77400	1	10	0,6	47,574	6,15E-03	3,69E-04	
Keroseno	0,017	41,868	0,703	71900	1	10	0,6	0,051	7,03E-06	4,22E-07	
Nafta	0,900	41,868	37,688	73300	1	10	0,6	2,763	3,77E-04	2,26E-05	
Leña	9,286	41,868	388,790	112000	1	300	4	43,544	1,17E-01	1,56E-03	
							SubTotal Kton	133,61	0,1278	0,0022	
							Biomasa	43,544			
							Total Kton	90,06	0,1278	0,0022	

1-A4 b EMISIONES DE CO2 POR QUEMA DE COMBUSTIBLESRESIDENCIALES										
COMBUSTIBLE	CONSUMO	Factor de Conversión	Consumo	FE de Carbono	Fraccion del carbono oxidado	FE de CH4	FE de N2O	Emisiones CO2	Emisiones CH4	Emisiones N2O
	Ktep	TJ/Ktep	TJ	Kg/TJ	GgC	Kg/TJ	Kg/TJ	GgCO2	GgCH4	Gg N2O
Gas Natural	6,030	41,868	252,461	56100	0,995	5	0,1	14,092	1,26E-03	2,52E-05
Supergas	37,386	41,868	1565,258	63100	1	5	0,1	98,768	7,83E-03	1,57E-04
Propano	0,442	41,868	18,514	61600	1	5	0,1	1,140	9,26E-05	1,85E-06
Gasoil	0,240	41,868	10,048	74100	1	10	0,6	0,745	1,00E-04	6,03E-06
Diesel Oil	0,000	41,868	0,000	74100	1	10	0,6	0,000	0,00E+00	0,00E+00
Fuel Oil	10,814	41,868	452,747	77400	1	10	0,6	35,043	4,53E-03	2,72E-04
Keroseno	2,412	41,868	100,984	71900	1	10	0,6	7,261	1,01E-03	6,06E-05
Leña	113,966	41,868	4771,514	112000	1	300	4	534,410	1,43E+00	1,91E-02
Carbon Vegetal	3,457	41,868	144,744	112000	1	200	1	16,211	2,89E-02	1,45E-04
							SubTotal Kton	707,67	1,4752	0,0198
							Biomasa	550,621		
							Total Kton	157,05	1,4752	0,0198

1-ENERGÍA						
	CO2	CH4	N2O	CH4	N2O	TOTAL
	(Kton)	(Kton)	(Kton)	(Kton CO2 eq)	(Kton CO2 eq)	CO2 Eq
Industrias de la Energía	1992,639	0,078	0,016	1,644	4,853	1994,30
Industrias	540,259	0,023	0,004	0,477	1,313	540,74
Transporte	1000,351	0,162	0,075	3,407	23,248	1003,83
Residencial	157,048	1,475	0,020	30,980	6,123	188,05
Comercial y Servicio	90,062	0,128	0,002	2,684	0,673	92,75

RESULTADOS ENERGÍA SUMANDO	
EMISIONES POR CONSUMO ELÉCTRIC	O

Emisiones CO2	Directas	Energía eléctrica	TOTALES
	(Kton CO2 eq)	(Kton CO2 eq)	(Kton CO2 eq)
Transporte	1003,833		1203,37
Residencial	188,048	740,400	934,55
Comercial y Servicio	92,748	523,486	606,96
Industrias	540,740	574,142	1116,19
Refinería	360,224		360,22
Totales	2185,59	1838,03	4221,30

2 -PROCESOS

2 B5_1 EMISIONES PROCESOS POR UTILIZACIÓN DE CARBONATO SÓDICO								
Uso de	Importado	Factor de Ponderación	FE	CO2	CO2			
Carbonato Sódico	ton		(ton CO2/t Na2CO3)	ton	Kton			
Soulco	3668	0,75	0,415	1141,665	1,141665			

2 B7_3 EMISIONES PROCESOS PRODUCCIÓN DE CARBURO DE CALCIO									
111.	Importado	Factor de Ponderación	Factor de emisión	CO2	CO2				
Uso de Carburo de Calcio	ton		(ton CO2/t carburo producido)	ton	Kton				
	365	0,75	1,1	301,125	0,391875				

2- PROCESOS								
	CO2 (Kton)	TOTAL						
	(Kton CO2 eq)	(Kton CO2 eq)						
Carbonato Sódico	1,142	1,142						
Carburo de calcio	0,301	0,301						
Totales		1,44						

3 -AGRICULTURA, SILVICULTURA Y OTROS USOS DE LA TIERRA

3 A1 FERMENTACIÓN ENTÉRICA									
Tipo de Ganado	Numero de Animales	FE	CH4	FE del aprovechamien to del estiércol	CH4	Emisiones	TOTAL		
	Unidades	kg CH4/ cabeza/año	t/año	kg/cabeza/año	t/año	Kotn CH4	(Kton CO2 eq)		
Ganado lechero	217	63	13,67	1	0,22	0,01	0,292		
Ganado no lechero	2540	56	142,24	1	2,54	0,14	3,040		
Ovejas	2178	5	10,89	0,15	0,33	0,01	0,236		
Caballos	95	18	1,72	1,64	0,16	0,00	0,039		
Cerdos	7315	1	7,32	1	7,32	0,01	0,307		
Aves de Corral	447421	0	0,00	0,02	8,95	0,01	0,188		
Mulas y asnos	0	10	0,00	0,9	0,00	0,00	0,000		
Cabras	8	5	0,04	0,17	0,00	0,00	0,001		
				То	tal Kton	0,20	4,10		

3 A2 GESTIÓN DEL ESTIÉRCOL									
	EMISIONES POR TRATAMIENTO								
Tipo de Ganado	Número de Animales	Nitrógeno excretado por animal	Laguna anaerobia	Sistema líquido	Almacenam iento sólido y parcelas secas	Abonado diario	Praderas y pastizales		
	Unidades	Kg N/animal/año	Kg N /año	Kg N /año	Kg N /año	Kg N /año	Kg N /año	Kg N /año	
Ganado lechero	217	3497,7	9124,4	9124,4	11861,7	5474,6	0,0	0,0	
Ganado no lechero	2540	0,0	0,0	66751,2	0,0	132167,4	26700,5	28191,1	
Ovejas	2178	0,0	0,0	36832,6	0,0	41855,2	0,0	0,0	
Caballos	95	0,0	0,0	7751,9	0,0	8720,9	0,0	0,0	
Cerdos	7315	46110,5	108988,4	104796,5	0,0	0,0	41918,6	41918,6	
Aves de Corral	447421	231429,4	0,0	0,0	0,0	162000,6	231429,4	529199,7	
Mulas y asnos	0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	
Cabras	8	0,0	0,0	0,0	0,0	0,0	0,0	0,0	
To	otales por Trat	tamiento (Kg/N)	118112,80	225256,60	11861,74	350218,70	300048,52	599309,37	

3 A2 GESTIÓN DEL ESTIÉRCOL								
Tratamiento	Total N	FE	N2O Gg N2O/año	CO2 eq				
	Kg N/año	Kg N20/Kg N	(44/28)	Gg				
Laguna anaerobia	281037,60	0,0020	5,62E-04	0,17				
Sistema líquido	118112,80	0,01	5,91E-04	0,18				
Almacenamiento sólido y								
parcelas secas	225256,60	0,0050	1,13E-03	0,35				
Abonado diario	11861,74	0,00	0,00E+00	0,00				
Praderas y pastizales	350218,70	0,00	0,00E+00	0,00				
otros	300048,52435	0,02	6,00E-03	1,86				
		TOTAL	0,008	2,57				

3-AGRICULTURA SILVICULTURA									
Agricultura	CH4	N2O	CH4	N2O	TOTAL				
	(Kton)	(Kton)	(Kton CO2 eq)	(Kton CO2 eq)	(Kton CO2 eq)				
Gestión del estiércol		0,008		2,567	2,567				
Fermentación entérica	0,195		4,103		4,103				

4 - RESIDUOS

4 A1 EMISIONES DIRECTAS DE CH4 POR RESIDUOS EN VERTEDERO Tasa potencial de Tasa real de Total neto Total anual de generación de generación de anual de Total Fracción del **RSU** metano por metano por Fracción del metano emisiones Fracción de COD que Relación de unidad de unidad de FCM ** eliminados en carbono liberado generado COD en los RSU realmente se conversión desperdicios. desperdicios. como metano vertederos degrada (Kton) (GgCH4/GgRSU) (GgCH4/GgRSU) Kton CO2 eq 658,403 522,042 1 0,1 0,7 0,5 1,3 0,1 0,1 31,4 Factor de corrección para el metano (FCM) Proporción de desperdicios (por FCM medio ponderado para peso) de cada cada tipo de tipo de vertedero vertedero de de residuos Factor de corrección residuos sólidos sólidos Tipo de vertedero para el metano (FCM) Υ W Χ Y=WxX controlados anaeróbico 1 1 1 no controlados profundos (mas de 5mts de 0 desperdicios) 0 8,0

4 D1 TRATAMIENTO Y ELIMINACIÓN DE AGUAS RESIDUALES DOMÉSTICAS									
Consumo medio anual per cápita de proteínas	Población	Fracción de N en la proteína	Factor de Factor de proteinas		Factor de emisión	N efluente	Emisión	Emisiones de N2O	Total emisiones
(kg/persona.año)	(INE)	(kg N/kg proteína)	proteinas co eliminadas	Industriales 0	Kg N20/kgN	(kg N-N2O / año)	(kg N2O-N/kg N en el excremento)	Kton N2O	Kton CO2eq
28,8	1340273	0,2	1,1	1,3	0,0	8491969,7	66722,6	0,1	20,684

0,06

1,06

0,4

2,2

0,15

1,15

no controlados poco profundos (menos de

5mts de desperdicios)

Total

4 D2 TRATAMIENTO Y ELIMINACIÓN DE AGUAS RESIDUALES INDUSTRIALES								
Efluentes anaerobios	Efluente anual de aguas residuales m3/año	DQO total generada Gg	Metano recuperado	Emisiones netas de CH4 Gg	Emisión total (Kton CO2 eq)			
Desechos industriales anaerobios	5268600	19,1	0,0	3,8	91,678			

4- RESIDUOS					
Residuos	CH4	N2O	CH4	N2O	Total
Residuos	Kton	Kton	Kton CO2 eq	Kton CO2eq	Kton CO2eq
Disposición final	31,35		658,40	0,000	658,40
Tratamiento anaerobio industrial	3,82		80,22	0,000	80,22
Excretas humanas		0,07	0,00	20,684 TOTAL	20,68 759,31

EMISIONES TOTALES POR CATEGORIA

Emisiones	CO2	N2O	CH4	CO2eq
	kton	kton	kton	kton
TOTAL	3781,80	0,19	37,23	4628,78
1 ENERGÍA	3780,4	0,117	1,9	3861,4
A1 Industrias de la Energía	1992,64	1,57E-02	7,83E-02	1999,37
A2 Industrias	540,26	4,24E-03	2,27E-02	542,12
A3 Transporte	1000,35	7,50E-02	1,62E-01	1027,49
A4ª Residencial	157,05	1,98E-02	1,48E+00	198,58
A4b Comercial y Servicios	90,06	2,17E-03	1,28E-01	93,80
2 PROCESOS INDUSTRIALES	1,4			1,4
B5 Carbonato Sódico	1,14			1,14
B7 Carburo de Calcio	0,30			0,30
3 AGRICULTURA, SILVICULTURA Y OTROS US TIERRA	SOS DE LA	0,01	0,20	6,7
A1 Fermentación Entérica			0,20	4,69
A2 Manejo del estiercol		8,28E-03		2,57
4 RESIDUOS		0,07	35,17	759,3
A1 Disposición de Residuos Sólidos			31,35	752,46
D1 Tratamiento de Aguas Residuales Industriales	3		3,82	91,68
D2 Tratamiento de Aguas Residuales domésticas	•	6,67E-02		20,68
PARTIDAS INFORMATIVAS	620,9			620,9
Quema de biomasa	620,88			620,88

1-ENERGIA

1- A1 EMISIO	1- A1 EMISIONES DE CO2 POR QUEMA DE COMBUSTIBLES EN INDUSTRIAS DE LA ENERGÍA											
	COMBUSTIBLE	CONSUMO	Factor de Conversión	Consumo	FE de Carbono	FE de CH4	FE de N2O	Emisiones CO2	Emisiones CH4	Emisiones N2O		
		Ktep	TJ/Ktep	TJ	kg/TJ	Kg/TJ	kg/Tj	GgCO2	GgCH4	Gg N2O		
Refinerías	Fuel Oil	119,084	41,868	4985,810	77400	3,000	0,600	385,902	0,015	0,003		
CentralesTérm	i Fuel Oil	218,661	41,868	9154,882	77400	3,000	0,600	708,588	0,027	0,005		
cas	Gasoil	34,654	41,868	1450,895	74100	3,000	0,600	107,511	0,004	0,001		
							Total Kton	1202,00	0,0468	0,0094		

1- A2 EMISIC	ONES DE CO	2 POR QUE	MA DE CO	MBUSTIBLES	EN INDUS	TRIAS				
COMBUSTIBLE	CONSUMO	Factor de Conversión	Consumo	FE de Carbono	Fraccion del carbono oxidado	FE de CH4	FE de N2O	Emisiones CO2	Emisiones CH4	Emisiones N2O
	Ktep	TJ/Ktep	TJ	Kg/TJ	GgC	Kg/TJ	Kg/TJ	GgCO2	GgCH4	Gg N2O
Gas Natural	5,098	41,870	213,455	56100	1	1	0,1	11,975	2,13E-04	2,13E-05
Supergas	0,000	41,868	0,000	63100	1	1	0,1	0,000	0,00E+00	0,00E+00
Propano	0,000	41,868	0,000	61600	1	1	0,1	0,000	0,00E+00	0,00E+00
Butano	0,221	41,868	9,261	61100	1	1	0,1	0,566	9,26E-06	9,26E-07
Gasoil	39,115	41,868	1637,650	74100	1	3	0,6	121,350	4,91E-03	9,83E-04
Diesel Oil	1,313	41,868	54,982	74100	1	3	0,6	4,074	1,65E-04	3,30E-05
Fuel Oil	111,750	41,868	4678,762	77400	1	3	0,6	362,136	1,40E-02	2,81E-03
Keroseno	0,000	41,870	0,000	71900	1	3	0,1	0,000	0,00E+00	0,00E+00
Nafta	0,007	41,868	0,305	73300	1	3	0,6	0,022	9,15E-07	1,83E-07
Leña	64,004	42,868	2743,743	11200	1	1	0,1	30,730	2,74E-03	2,74E-04
							SubTotal Kton	530,85	0,0221	0,0041
							Biomasa	30,730		
							Total Kton	500,12	0,0221	0,0041

1-A3 EMISIO	1-A3 EMISIONES DE CO2 POR QUEMA DE COMBUSTIBLES EN TRANSPORTE TERRESTRE										
COMBUSTIBLE	Fraccion del STIBLE CONSUMO Factor de Consumo FE de Carbono carbono FE de CH4 FE de N2O CO2 CH4 N2 oxidado										
	Ktep	TJ/Ktep	TJ	Kg CO2/TJ	GgCO2	kg/TJ	Kg/TJ	GgCO2	GgCH4	Gg N2O	
Gasolina	153,668	41,868	6433,763	69300	1	25	8	445,860	1,61E-01	5,15E-02	
Gasoil	209,080	41,868	8753,768	74100	1	3,9	3,9	648,654	3,41E-02	3,41E-02	
								1094,51	0,1950	0,0856	

1 A4a EMISIO	ONES DE CO	2 POR QUE	MA DE CO	OMBUSTIBLES	EN COME	RCIALES Y	SERVICIOS			
COMBUSTIBLE	CONSUMO	Factor de Conversión	Consumo	FE de Carbono	Fraccion del carbono oxidado	FE de CH4	FE de N2O	Emisiones CO2	Emisiones CH4	Emisiones N2O
	Ktep	TJ/Ktep	TJ	Kg/TJ	GgC	Kg/TJ	Kg/TJ	GgCO2	GgCH4	Gg N2O
Gas Natural	6,253	41,868	261,804	56100	0,995	5	0,1	14,614	1,31E-03	2,62E-05
Supergas	1,484	41,868	62,141	63100	1	5	0,1	3,921	3,11E-04	6,21E-06
Propano	0,018	41,868	0,746	61600	1	5	0,1	0,046	3,73E-06	7,46E-08
Gasoil	10,401	41,868	435,489	74100	1	10	0,6	32,270	4,35E-03	2,61E-04
Diesel Oil	0,337	41,868	14,108	74100	0,995	10	0,6	1,040	1,41E-04	8,46E-06
Fuel Oil	10,787	41,868	451,645	77400	1	10	0,6	34,957	4,52E-03	2,71E-04
Keroseno	0,005	41,868	0,207	71900	1	10	0,6	0,015	2,07E-06	1,24E-07
Nafta	1,941	41,868	81,282	73300	1	10	0,6	5,958	8,13E-04	4,88E-05
Leña	9,200	41,868	385,202	112000	1	300	4	43,143	1,16E-01	1,54E-03
						:	SubTotal Kton	135,96	0,1270	0,0022
							Biomasa	43,143		
							Total Kton	92,82	0,1270	0,0022

1 A4b EMISIO	ONES DE CO	2 POR QUE	MA DE CO	OMBUSTIBLES	EN RESID	ENCIALES				
COMBUSTIBLE	CONSUMO	Factor de Conversión	Consumo	FE de Carbono	Fraccion del carbono oxidado	FE de CH4	FE de N2O	Emisiones CO2	Emisiones CH4	Emisiones N2O
	Ktep	TJ/Ktep	TJ	Kg/TJ	GgC	Kg/TJ	Kg/TJ	GgCO2	GgCH4	Gg N2O
Gas Natural	6,851	41,868	286,817	56100	0,995	5	0,1	16,010	1,43E-03	2,87E-05
Supergas	41,183	41,868	1724,237	63100	1	5	0,1	108,799	8,62E-03	1,72E-04
Propano	0,717	41,868	30,016	61600	1	5	0,1	1,849	1,50E-04	3,00E-06
Gasoil	0,240	41,868	10,048	74100	1	10	0,6	0,745	1,00E-04	6,03E-06
Diesel Oil	0,000	41,868	0,000	74100	1	10	0,6	0,000	0,00E+00	0,00E+00
Fuel Oil	10,077	41,868	421,888	77400	1	10	0,6	32,654	4,22E-03	2,53E-04
Keroseno	2,669	41,868	111,725	71500	1	10	0,6	7,988	1,12E-03	6,70E-05
Leña	112,914	41,868	4727,478	112000	1	300	4	529,478	1,42E+00	1,89E-02
Carbon Vegetal	0,597	41,868	25,013	112000	1	200	1	2,801	5,00E-03	2,50E-05
						;	SubTotal Kton	700,32	1,4389	0,0195
							Biomasa	532,279		
							Total Kton	168,05	1,4389	0,0195

1-ENERGÍA	4					
	CO2	CH4	N2O	CH4	N2O	TOTAL
	(Kton)	(Kton)	(Kton)	(Kton CO2 eq)	(Kton CO2 eq)	CO2 Eq
Industrias de la Energía	1202,001	0,047	0,009	0,982	2,900	1205,88
Industrias	500,123	0,022	0,004	0,464	1,277	501,86
Transporte	1094,514	0,195	0,086	4,095	26,539	1125,15
Residencial	168,045	1,439	0,019	30,217	6,034	204,30
Comercial y Servicio	92,821	0,127	0,002	2,667	0,671	96,18

RESULTADOS ENERGÍA SUMANDO EMISIONES POR CONSUMO ELÉCTRICO

Emisiones CO2	Directas	Energía eléctrica	TOTALES
	(Kton CO2 eq)	(Kton CO2 eq)	(Kton CO2 eq)
Transporte	1125,148		1125,15
Residencial	204,296	770,583	974,88
Comercial y Servicio	94,825	605,475	700,30
Industrias	501,864	566,092	1067,96
Refinería	385,902		385,90
Totales	2312,03	1942,15	4254,19

2 -PROCESOS

2 B5_1 EMISIONES PROCESOS POR UTILIZACIÓN DE CARBONATO SÓDICO									
Uso de	Importado	Factor de Ponderación	FE	CO2	CO2				
Carbonato Sódico	ton		(ton CO2/t Na2CO3)	ton	Kton				
Codico	5064	0,75	0,415	1576,17	1,57617				

2 B7_3 EMISIONES PROCESOS PRODUCCIÓN DE CARBURO DE CALCIO										
	Importado	Factor de Ponderación	Factor de emisión	CO2	CO2					
Uso de Carburo de Calcio	ton		(ton CO2/t carburo producido)	ton	Kton					
	250	0,75	1,1	206,25	0,20625					

2 PROCE	SOS	
	CO2 (Kton)	TOTAL
	(Kton CO2 eq)	(Kton CO2 eq)
Carbonato Sódico	1,576	1,576
Carburo de calcio	0,206	0,206
Totales		1,78

3 -AGRICULTURA, SILVICULTURA Y OTROS USOS DE LA TIERRA

3 A1 FERMENTACIÓN ENTÉRICA										
Tipo de Ganado	Numero de Animales	FE	CH4	FE del aprovechamien to del estiércol	CH4	Emisiones	TOTAL			
	Unidades	kg CH4/ cabeza/año	t/año	kg/cabeza/año	t/año	Kotn CH4	(Kton CO2 eq)			
Ganado lechero	218	63	13,71	1	0,22	0,01	0,292			
Ganado no lechero	2720	56	152,32	1	2,72	0,16	3,256			
Ovejas	1682	5	8,41	0,15	0,25	0,01	0,182			
Caballos	152	18	2,74	1,64	0,25	0,00	0,063			
Cerdos	7315	1	7,32	1	7,32	0,01	0,307			
Aves de Corral	167435	0	0,00	0,02	3,35	0,00	0,070			
Mulas y asnos	0	10	0,00	0,9	0,00	0,00	0,000			
Cabras	13	5	0,07	0,17	0,00	0,00	0,001			
				То	tal Kton	0,20	4,17			

3 A2 GESTIÓN DEL ESTIÉRCOL										
	EMISIONES POR TRATAMIENTO									
Tipo de Ganado	Número de Animales	Nitrógeno excretado por animal	Laguna	Sistema líquido	Almacenam iento sólido y parcelas secas	Abonado diario	Praderas y pastizales	Otros		
	Unidades	Kg N/animal/año	Kg N /año	Kg N /año	Kg N /año	Kg N /año	Kg N /año	Kg N /año		
Ganado lechero	218	3507,4	9149,6	9149,6	11894,5	5489,8	0,0	0,0		
Ganado no lechero	2720	0,0	0,0	71481,6	0,0	141533,6	28592,6	28191,1		
Ovejas	1682	0,0	0,0	28444,6	0,0	32323,4	0,0	0,0		
Caballos	152	0,0	0,0	12377,2	0,0	13924,3	0,0	0,0		
Cerdos	7315	46110,5	108988,4	104796,5	0,0	0,0	41918,6	41918,6		
Aves de Corral	167435	86606,0	0,0	0,0	0,0	60624,2	86606,0	529199,7		
Mulas y asnos	0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
Cabras	13	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
To	otales por Trat	amiento (Kg/N)	118138,02	226249,56	11894,54	253895,33	157117,27	599309,37		

3 A2 GESTIÓN DEL ESTIÉRCOL							
Tratamiento	Total N Kg N/año	FE Ka N20/Ka N	N2O Gg N2O/año (44/28)	CO2 eq			
Laguna anaerobia	136223,86	0.0020	2.72E-04	Gg 0,08			
Sistema líquido	118138,02	0,01	5,91E-04	0,18			
Almacenamiento sólido y parcelas secas	226249,56	0,0050	1,13E-03	0,35			
Abonado diario	11894,54	0,00	0,00E+00	0,00			
Praderas y pastizales	253895,33	0,00	0,00E+00	0,00			
otros	157117,27072	0,02	3,14E-03	0,97			
		TOTAL	0,005	1,59			

3- AGRICULTURA SILVICULTURA								
Agricultura	CH4	N2O	CH4	N2O	TOTAL			
	(Kton)	(Kton)	(Kton CO2 eq)	(Kton CO2 eq)	(Kton CO2 eq)			
Gestión del estiércol		0,005		1,592	1,592			
Fermentación entérica	0,199		4,172		4,172			

4 -RESIDUOS

4A 1 EMISIONE	4A 1 EMISIONES DIRECTAS DE CH4 POR RESIDUOS EN VERTEDERO								
Total anual de RSU eliminados en vertederos (Kton)	FCM **	Fracción de COD en los RSU	Fracción del COD que realmente se degrada	Fracción del carbono liberado como metano	Relación de conversión	Tasa potencial de generación de metano por unidad de desperdicios.	Tasa real de generación de metano por unidad de desperdicios.	Total neto anual de metano generado	Total emisiones
						(GgCH4/GgRSU)	(GgCH4/GgRSU)	Kton	CO2 eq
622,242	1	0,1	0,7	0,5	1,3	0,1	0,1	37,4	784,776
Factor de correcci	ón para el m		Proporción de desperdicios (por peso) de cada tipo de vertedero de residuos sólidos	Factor de corrección para el metano (FCM)	FCM medio ponderado para cada tipo de vertedero de residuos sólidos				
			W	X	Y Y=WxX				
controlados anaer	óbico		1	1	1				
no controlados pro desperdicios)	ofundos (mas	de 5mts de	0	0.8	0				
no controlados po 5mts de desperdio		(menos de	0,15	0,4	0.06				
Total	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1,15	2,2	1,06				

4D 1 TRATAMIENTO Y ELIMINACIÓN DE AGUAS RESIDUALES DOMÉSTICAS									
Consumo medio anual per cápita de proteínas	Población	Fracción de N en la proteína	Factor de Factor de	Factor de proteinas	Factor de emisión	N efluente	Emisión	Emisiones de N2O	Total emisiones
(kg/persona.año)	(INE)	(kg N/kg proteína)	proteinas co eliminadas	Industriales 0	Kg N20/kgN	(kg N-N2O / año)	(kg N2O-N/kg N en el excremento)	Kton N2O	Kton CO2eq
28,8	1340273	0,2	1,1	1,3	0,0	8491969,7	66722,6	0,1	20,684

4D 2 TRATAMIENTO Y ELIMINACIÓN DE AGUAS RESIDUALES INDUSTRIALES							
Efluentes anaerobios	Efluente anual de aguas residuales m3/año	DQO total generada Gg	Metano recuperado	Emisiones netas de CH4 Gg	Emisión total (Kton CO2 eq)		
Desechos industriales anaerobios	5166000	10,3	0,0	2,1	49,594		

4 RESIDUOS					
Residuos	CH4	N2O	CH4	N2O	Total
residuos	Kton	Kton	Kton CO2 eq	Kton CO2eq	Kton CO2eq
Disposición final	37,37		784,78	0,000	784,78
Tratamiento anaerobio industrial	2,07		43,39	0,000	43,39
Excretas humanas		0,07	0,00	20,632 TOTAL	20,63 848,80

EMISIONES TOTALES POR CATEGORIA

Emisiones	CO2	N2O	CH4	CO2eq
Lillisiones	kton	kton	kton	kton
TOTAL	3059,29	0,19	41,47	3989,70
1 ENERGÍA	3057,5	0,1	1,8	3133,4
A1 Industrias de la Energía	1202,00	9,35E-03	0,05	1205,88
A2 Industrias	500,12	4,12E-03	0,02	501,86
A3 Transporte	1094,51	8,56E-02	0,19	1125,15
A4ª Residencial	168,05	1,95E-02	1,44	204,30
A4b Comercial y Servicios	92,82	2,16E-03	0,13	96,16
2 PROCESOS INDUSTRIALES	1,8			1,8
B5 Carbonato Sódico	1,58			1,58
B7 Carburo de Calcio	0,21			0,21
3 AGRICULTURA, SILVICULTURA Y OTROS US TIERRA	SOS DE LA	0,01	0,20	5,8
A1 Fermentación Entérica			0,20	4,17
A2 Manejo del estiercol		5,14E-03		1,59
4 RESIDUOS		0,07	39,44	848,8
A1 Disposición de Residuos Sólidos			37,37	784,78
D1 Tratamiento de Aguas Residuales Industriales	s		2,07	43,39
D2 Tratamiento de Aguas Residuales domésticas	S	6,66E-02		20,63
PARTIDAS INFORMATIVAS	606,2			606,2
Quema de biomasa	606,15			606,15